Skip to main content
Top
Published in: Neural Computing and Applications 9/2019

30-07-2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

A novel temporal protein complexes identification framework based on density–distance and heuristic algorithm

Authors: Dan Xie, Yang Yi, Jin Zhou, Xiaodong Li, Huikun Wu

Published in: Neural Computing and Applications | Issue 9/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The construction of dynamic protein–protein interaction networks is affected by cell tissue and its biological function, and the identification of protein complexes is important for understanding biological functions. This paper presents a new method named density–distance and heuristic for identifying temporal protein complexes. First, the gene expression data of time course are integrated into the static protein interaction data and a set of time-ordered networks are obtained. Then, the network is integrated with the gene information to calculate the distance between proteins in the protein–protein interaction network. Based on this distance, we have formed a number of clusters and selected the furthest cluster from the other cluster centers as the initial cluster to ensure that nodes with clusters are closest to each other. Finally, a heuristic algorithm is introduced, and the initial cluster is updated in two ways. The experimental results show that the proposed method has better performance compared with the commonly used algorithms; meanwhile, this method has a strong biological significance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Nat Acad Sci USA 100(21):12123–12128CrossRef Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Nat Acad Sci USA 100(21):12123–12128CrossRef
2.
go back to reference Chen BL, Fan WW, Liu J, Wu FX (2014) Identifying protein complexes and functional modules-from static PPI networks to dynamic PPI networks. Brief Bioinform 15(2):177–194CrossRef Chen BL, Fan WW, Liu J, Wu FX (2014) Identifying protein complexes and functional modules-from static PPI networks to dynamic PPI networks. Brief Bioinform 15(2):177–194CrossRef
3.
go back to reference Bhowmick S, Seah BS (2016) Clustering and summarizing protein–protein interaction networks: a survey. IEEE Trans Knowl Data Eng 28(3):638–658CrossRef Bhowmick S, Seah BS (2016) Clustering and summarizing protein–protein interaction networks: a survey. IEEE Trans Knowl Data Eng 28(3):638–658CrossRef
4.
go back to reference Lv JW (2015) Research on function module detection from large-scale and dynamic PPI networks based on ant colony algorithm. Master Thesis. Beijing University of Technology, Beijing, China Lv JW (2015) Research on function module detection from large-scale and dynamic PPI networks based on ant colony algorithm. Master Thesis. Beijing University of Technology, Beijing, China
5.
go back to reference Li X, Wu M, Kwoh CK, Ng SK (2010) Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genom 11(Suppl 1):S3CrossRef Li X, Wu M, Kwoh CK, Ng SK (2010) Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genom 11(Suppl 1):S3CrossRef
6.
go back to reference Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25(3):309–316CrossRef Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25(3):309–316CrossRef
7.
go back to reference Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29CrossRef Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29CrossRef
8.
go back to reference Tang XW, Wang JX, Liu BB, Li M, Chen G, Pan Y (2011) A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform 12:339CrossRef Tang XW, Wang JX, Liu BB, Li M, Chen G, Pan Y (2011) A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinform 12:339CrossRef
9.
go back to reference Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878MathSciNetCrossRef Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878MathSciNetCrossRef
10.
go back to reference Wu XH (2013) Analysis and evaluation of clustering algorithm for the protein interaction networks. Master Thesis. Central South University, Changsha, China Wu XH (2013) Analysis and evaluation of clustering algorithm for the protein interaction networks. Master Thesis. Central South University, Changsha, China
11.
go back to reference Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM et al (2004) GO: TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715CrossRef Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM et al (2004) GO: TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715CrossRef
12.
go back to reference Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5(12):60CrossRef Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B (2004) GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol 5(12):60CrossRef
13.
go back to reference Glass K, Ott E, Losert W, Girvan M (2012) Implications of functional similarity for gene regulatory interactions. J R Soc Interface 9(72):1625–1636CrossRef Glass K, Ott E, Losert W, Girvan M (2012) Implications of functional similarity for gene regulatory interactions. J R Soc Interface 9(72):1625–1636CrossRef
14.
go back to reference Yu YW, Zhao JD, Wang XD, Wang Q, Zhang YG (2015) Cludoop: an efficient distributed density-based clustering for big data using hadoop. Int J Distrib Sens Netw 11:1–13 Yu YW, Zhao JD, Wang XD, Wang Q, Zhang YG (2015) Cludoop: an efficient distributed density-based clustering for big data using hadoop. Int J Distrib Sens Netw 11:1–13
15.
go back to reference Rodriguez A, Laio A (2014) Machine learning. Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Machine learning. Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
18.
go back to reference Zhang XX, Xiao QH, Li B, Hu S, Xiong HJ, Zhao BH (2015) Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules. Front Inf Technol Electron Eng 16(4):293–300CrossRef Zhang XX, Xiao QH, Li B, Hu S, Xiong HJ, Zhao BH (2015) Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules. Front Inf Technol Electron Eng 16(4):293–300CrossRef
19.
go back to reference Xenarios I, Salwinski L, Duan XJ (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl Acids Res 30(1):303–305CrossRef Xenarios I, Salwinski L, Duan XJ (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl Acids Res 30(1):303–305CrossRef
20.
go back to reference Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compart mentalization of cellular processes. Science 310:1152–1158CrossRef Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compart mentalization of cellular processes. Science 310:1152–1158CrossRef
21.
go back to reference Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucl Acids Res 37:825–831CrossRef Pu S, Wong J, Turner B, Cho E, Wodak SJ (2009) Up-to-date catalogues of yeast protein complexes. Nucl Acids Res 37:825–831CrossRef
23.
go back to reference Wang JX, Peng XQ, Li M, Pan Y (2013) Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2):301–312CrossRef Wang JX, Peng XQ, Li M, Pan Y (2013) Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2):301–312CrossRef
24.
go back to reference Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2CrossRef Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2CrossRef
25.
go back to reference Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9:471–472CrossRef Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9:471–472CrossRef
26.
go back to reference Li XL, Tan SH, Foo CS, Ng SK (2005) Interaction graph mining for protein complexes using local clique merging. Int Conf Genome Inf 16:260–269 Li XL, Tan SH, Foo CS, Ng SK (2005) Interaction graph mining for protein complexes using local clique merging. Int Conf Genome Inf 16:260–269
27.
go back to reference Altafulamin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform 7:207CrossRef Altafulamin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform 7:207CrossRef
28.
go back to reference Li M, Chen JE, Wang JX, Hu B, Chen G (2008) Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinform 9:398CrossRef Li M, Chen JE, Wang JX, Hu B, Chen G (2008) Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinform 9:398CrossRef
31.
go back to reference Van Dongen S (2000) Graph clustering by flow simulation. Ph.D. Thesis. Utrecht: University of Utrecht Van Dongen S (2000) Graph clustering by flow simulation. Ph.D. Thesis. Utrecht: University of Utrecht
32.
go back to reference Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10:169CrossRef Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform 10:169CrossRef
33.
go back to reference Shi J, Chen B, Wu FX (2012) Not all protein complexes exhibit dense structures in S. cerevisiae PPI network. In: IEEE international conference on bioinformatics and biomedicine, pp 470–473 Shi J, Chen B, Wu FX (2012) Not all protein complexes exhibit dense structures in S. cerevisiae PPI network. In: IEEE international conference on bioinformatics and biomedicine, pp 470–473
34.
go back to reference Samanta MP, Liang S (2003) Predicting protein functions from redundancies in large-scale protein interaction networks. PNAS 100:12579–12583CrossRef Samanta MP, Liang S (2003) Predicting protein functions from redundancies in large-scale protein interaction networks. PNAS 100:12579–12583CrossRef
36.
go back to reference Chatr-aryamontri A, Ceol A, Licata L, Cesareni G (2008) Protein interactions: integration leads to belief. Trends Biochem Sci 33:241–242CrossRef Chatr-aryamontri A, Ceol A, Licata L, Cesareni G (2008) Protein interactions: integration leads to belief. Trends Biochem Sci 33:241–242CrossRef
37.
go back to reference Tan PP, Dargahi D, Pio F (2010) Predicting protein complexes by data integration of different types of interactions. Int J Comput Biol Drug Des 3:19–30CrossRef Tan PP, Dargahi D, Pio F (2010) Predicting protein complexes by data integration of different types of interactions. Int J Comput Biol Drug Des 3:19–30CrossRef
38.
go back to reference Chen J, Yuan B (2006) Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22:2283–2290CrossRef Chen J, Yuan B (2006) Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22:2283–2290CrossRef
39.
go back to reference Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24:i223–i231CrossRef Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24:i223–i231CrossRef
Metadata
Title
A novel temporal protein complexes identification framework based on density–distance and heuristic algorithm
Authors
Dan Xie
Yang Yi
Jin Zhou
Xiaodong Li
Huikun Wu
Publication date
30-07-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3660-5

Other articles of this Issue 9/2019

Neural Computing and Applications 9/2019 Go to the issue

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Constructive function approximation by neural networks with optimized activation functions and fixed weights

Premium Partner