Skip to main content
Top
Published in: Colloid and Polymer Science 6/2004

01-04-2004 | Original Contribution

A novel thermally-activated crosslinking agent for chitosan in aqueous solution: a rheological investigation

Authors: Stephen B. Johnson, David E. Dunstan, George V. Franks

Published in: Colloid and Polymer Science | Issue 6/2004

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract.

The use of 2,5-dimethoxy-2,5-dihydrofuran (DHF) as a temperature-controlled gelation agent for chitosan under acidic conditions has been examined by dynamic oscillatory and viscometry techniques. In particular, the rate and extent of gelation have been examined over a range of different temperatures (40–98 °C), DHF concentrations (10–100 mM) and pH conditions (0.9–2.1). The gelation time, tG, decreases, and the maximum gelation rate increases substantially as a function of rising temperature. When fit with a simple Arrhenius function, the tG data yield an activation energy for gelation of 55±8 kJ mol-1. Gelation is found to occur on the shortest time-scale, and the strongest gels result, at the highest DHF concentrations investigated. Similarly, the gelation rate and gel strength are highest for the most acidic solution conditions examined. Experimental findings are interpreted in terms of a competition between the crosslinking reaction (which drives gel formation, and is initially dominant) and protolytic decomposition of chitosan (which disrupts the gel structure, and becomes increasingly important as time progresses). Syneresis phenomena additionally impact results obtained at DHF concentrations ≥50 mM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The strict definition of tG has been considered in detail by Chambon and Winter [75, 76, 77], who defined it as the condition at which tan(G’’/G’) is independent of frequency. Their treatment requires accurate measurements of G’ and G’’ over a wide range of frequencies both before and after tG and additionally, requires that G’ and G’’ do not vary appreciably during each frequency sweep. Unfortunately, in the present study, G’ and G’’ were difficult to accurately assess prior to tG due to measurements being undertaken at the lower stress limit of the rheometer. In addition, during the gelation process, G’ and G’’ were often found to vary significantly over the duration of each frequency sweep. As a result, tG could not be accurately assessed using the treatment of Chambon and Winter [75, 76, 77]. The G’-G’’ crossover method of Tung and Dynes [78] was instead used and, while not providing a strict measure of tG, does allow a comparison of the crosslinking behaviour at a common stage of gelation. It is, however, worthy of note that given the change in δ from ca. 80° to ≤1° is rapid, particularly at the higher temperatures investigated (see Fig. 2), it is expected that the values of tG calculated using the G’-G’’ crossover method are in reasonable agreement with the Chambon and Winter gel point definition.
 
Literature
1.
go back to reference Mathur NK, Narang CK (1990) J Chem Edu 67:938–942 Mathur NK, Narang CK (1990) J Chem Edu 67:938–942
2.
go back to reference Sandford PA, Hutchings GP (1987) Chitosan—a natural, cationic biopolymer: commercial applications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam Sandford PA, Hutchings GP (1987) Chitosan—a natural, cationic biopolymer: commercial applications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam
4.
go back to reference Tharanathan RN, Kittur FS (2003) Crit Rev Food Sci Nutrition 43:61–87 Tharanathan RN, Kittur FS (2003) Crit Rev Food Sci Nutrition 43:61–87
5.
7.
go back to reference Dutta PK, Ravikumar MN, Dutta J (2002) J Macromol Sci Polym Rev C42:307–354CrossRef Dutta PK, Ravikumar MN, Dutta J (2002) J Macromol Sci Polym Rev C42:307–354CrossRef
8.
go back to reference Singh DK, Ray AR (2000) J Macromol Sci Rev Macromol Chem Phys C40:69–83 Singh DK, Ray AR (2000) J Macromol Sci Rev Macromol Chem Phys C40:69–83
9.
go back to reference Peter MG (1995) J Macromol Sci Pure Appl Chem A32:629–640 Peter MG (1995) J Macromol Sci Pure Appl Chem A32:629–640
12.
go back to reference Paul W, Sharma CP (2000) STP Pharma Sci 10:5-22 Paul W, Sharma CP (2000) STP Pharma Sci 10:5-22
13.
14.
go back to reference Rathke TD, Hudson SM (1994) J Macromol Sci Rev Macromol Chem Phys C34:375–437 Rathke TD, Hudson SM (1994) J Macromol Sci Rev Macromol Chem Phys C34:375–437
15.
17.
go back to reference Ottoy MH, Varum KM, Christensen BE, Anthonsen MW, Smidsrod O (1996) Carbohydrate Polym 31:253–261CrossRef Ottoy MH, Varum KM, Christensen BE, Anthonsen MW, Smidsrod O (1996) Carbohydrate Polym 31:253–261CrossRef
18.
go back to reference Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Biomacromol 4:641–648CrossRef Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Biomacromol 4:641–648CrossRef
19.
go back to reference Arguelles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Polym Gels Networks 6:429–440CrossRef Arguelles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I (1998) Polym Gels Networks 6:429–440CrossRef
21.
go back to reference Knaul JZ, Hudson SM, Creber KAM (1999) J Polym Sci B—Polym Phys 37:1079–1094 Knaul JZ, Hudson SM, Creber KAM (1999) J Polym Sci B—Polym Phys 37:1079–1094
22.
go back to reference Wei YC, Hudson SM, Mayer JM, Kaplan DL (1992) J Polym Sci A—Polym Chem 30:2187–2193 Wei YC, Hudson SM, Mayer JM, Kaplan DL (1992) J Polym Sci A—Polym Chem 30:2187–2193
23.
24.
go back to reference Mi FL, Shyu SS, Lee ST, Wong TB (1999) J Polym Sci B—Polym Phys 37:1551–1564 Mi FL, Shyu SS, Lee ST, Wong TB (1999) J Polym Sci B—Polym Phys 37:1551–1564
25.
28.
go back to reference Thanoo BC, Sunny MC, Jayakrishnan A (1992) J Pharm Pharmacol 44:283–286PubMed Thanoo BC, Sunny MC, Jayakrishnan A (1992) J Pharm Pharmacol 44:283–286PubMed
29.
go back to reference Jameela SR, Kumary TV, Lal AV, Jayakrishnan A (1998) J Controlled Release 52:17–24CrossRef Jameela SR, Kumary TV, Lal AV, Jayakrishnan A (1998) J Controlled Release 52:17–24CrossRef
30.
go back to reference Nigalaye AG, Adusumilli P, Bolton S (1990) Drug Dev Ind Pharm 16:449–467 Nigalaye AG, Adusumilli P, Bolton S (1990) Drug Dev Ind Pharm 16:449–467
31.
go back to reference Kawashima Y, Handa T, Kasai A, Takenaka H, Lin SY, Ando Y (1985) J Pharm Sci 74:264–268PubMed Kawashima Y, Handa T, Kasai A, Takenaka H, Lin SY, Ando Y (1985) J Pharm Sci 74:264–268PubMed
32.
go back to reference Hsien TY, Rorrer GL (1995) Sep Sci Technol 30:2455–2475 Hsien TY, Rorrer GL (1995) Sep Sci Technol 30:2455–2475
33.
go back to reference Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF (2000) Carbohydrate Polym 41:389–396CrossRef Mi FL, Kuan CY, Shyu SS, Lee ST, Chang SF (2000) Carbohydrate Polym 41:389–396CrossRef
34.
go back to reference Hou WM, Miyazaki S, Takada M, Komai T (1985) Chem Pharm Bull 33:3986–3992PubMed Hou WM, Miyazaki S, Takada M, Komai T (1985) Chem Pharm Bull 33:3986–3992PubMed
35.
go back to reference Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A (1996) J Pharm Pharmacol 48:685–688PubMed Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A (1996) J Pharm Pharmacol 48:685–688PubMed
36.
go back to reference Filipovic-Grcic J, Becirevic-Lacan M, Skalko N, Jalsenjak I (1996) Int J Pharm 135:183–190CrossRef Filipovic-Grcic J, Becirevic-Lacan M, Skalko N, Jalsenjak I (1996) Int J Pharm 135:183–190CrossRef
37.
go back to reference Nishioka Y, Kyotani S, Okamura M, Miyazaki M, Okazaki K, Ohnishi S, Yamamoto Y, Ito K (1990) Chem Pharm Bull 38:2871–2873PubMed Nishioka Y, Kyotani S, Okamura M, Miyazaki M, Okazaki K, Ohnishi S, Yamamoto Y, Ito K (1990) Chem Pharm Bull 38:2871–2873PubMed
40.
42.
go back to reference Jameela SR, Misra A, Jayakrishnan A (1994) J Biomat Sci Polym Ed 6:621–632 Jameela SR, Misra A, Jayakrishnan A (1994) J Biomat Sci Polym Ed 6:621–632
43.
go back to reference Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) J Macromol Sci Pure Appl Chem A31:629–642 Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) J Macromol Sci Pure Appl Chem A31:629–642
44.
go back to reference Wan LSC, Lim LY, Soh BL (1994) STP Pharma Sci 4:195–200 Wan LSC, Lim LY, Soh BL (1994) STP Pharma Sci 4:195–200
47.
49.
go back to reference Al Helw AA, Al Angary AA, Mahrous GM, Al Dardari MM (1998) J Microencapsulation 15:373–382PubMed Al Helw AA, Al Angary AA, Mahrous GM, Al Dardari MM (1998) J Microencapsulation 15:373–382PubMed
50.
51.
go back to reference Koseva N, Stoilova O, Manolova N, Rashkov I, Madec PJ (2001) J Bioactive Compat Polym 16:3-19CrossRef Koseva N, Stoilova O, Manolova N, Rashkov I, Madec PJ (2001) J Bioactive Compat Polym 16:3-19CrossRef
53.
go back to reference Dini E, Alexandridou S, Kiparissides C (2003) J Microencapsulation 20:375–385PubMed Dini E, Alexandridou S, Kiparissides C (2003) J Microencapsulation 20:375–385PubMed
54.
go back to reference Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, Mizoguchi T (1997) Biol Pharm Bull 20:708–710PubMed Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, Mizoguchi T (1997) Biol Pharm Bull 20:708–710PubMed
55.
go back to reference Senkoylu A, Simsek A, Sahin FI, Menevse S, Ozogul C, Denkbas EB, Piskin E (2001) J Bioactive Compat Polym 16:136–144CrossRef Senkoylu A, Simsek A, Sahin FI, Menevse S, Ozogul C, Denkbas EB, Piskin E (2001) J Bioactive Compat Polym 16:136–144CrossRef
59.
go back to reference Kurita K (1987) Binding of metal cations by chitin derivatives: improvement of adsorption ability through chemical modifications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam Kurita K (1987) Binding of metal cations by chitin derivatives: improvement of adsorption ability through chemical modifications. In: Yalpani M (ed) Industrial polysaccharides: genetic engineering, structure/property relations and applications. Elsevier, Amsterdam
60.
go back to reference Ohga K, Kurauchi Y, Yanase H (1987) Bull Chem Soc Jpn 60:444–446 Ohga K, Kurauchi Y, Yanase H (1987) Bull Chem Soc Jpn 60:444–446
62.
go back to reference Kawamura Y, Yoshida H, Asai S, Kurahashi I, Tanibe H (1997) Sep Sci Technol 32:1959–1974 Kawamura Y, Yoshida H, Asai S, Kurahashi I, Tanibe H (1997) Sep Sci Technol 32:1959–1974
63.
go back to reference Guibal E, Milot C, Roussy J (1999) Wat Environ Res 71:10–17 Guibal E, Milot C, Roussy J (1999) Wat Environ Res 71:10–17
64.
68.
go back to reference Oshita K, Oshima M, Gao YH, Lee KH, Motomizu S (2002) Anal Sci 18:1121–1125PubMed Oshita K, Oshima M, Gao YH, Lee KH, Motomizu S (2002) Anal Sci 18:1121–1125PubMed
69.
70.
72.
go back to reference Hansen EW, Holm KH, Jahr DM, Olafsen K, Stori A (1997) Polymer 38:4863–4871CrossRef Hansen EW, Holm KH, Jahr DM, Olafsen K, Stori A (1997) Polymer 38:4863–4871CrossRef
73.
go back to reference Johnson SB, Dunstan DE, Franks GV (2002) J Am Ceram Soc 85:1699–1705 Johnson SB, Dunstan DE, Franks GV (2002) J Am Ceram Soc 85:1699–1705
74.
go back to reference Merkovich EA, Carruette ML, Babak VG, Vikhoreva GA, Gal’braikh LS, Kim VE (2001) Colloid J 63:350–354CrossRef Merkovich EA, Carruette ML, Babak VG, Vikhoreva GA, Gal’braikh LS, Kim VE (2001) Colloid J 63:350–354CrossRef
75.
go back to reference Chambon F, Winter HH (1985) Polym Bull 13:499–503 Chambon F, Winter HH (1985) Polym Bull 13:499–503
77.
go back to reference Chambon F, Winter HH (1987) J Rheol 31:683–697 Chambon F, Winter HH (1987) J Rheol 31:683–697
79.
go back to reference Nolte H, John S, Smidsrod O, Stokke BT (1992) Carbohydrate Polym 18:243–251CrossRef Nolte H, John S, Smidsrod O, Stokke BT (1992) Carbohydrate Polym 18:243–251CrossRef
80.
go back to reference Park SJ, Kim TJ, Lee JR (2000) J Polym Sci B—Polym Phys 38:2114–2123 Park SJ, Kim TJ, Lee JR (2000) J Polym Sci B—Polym Phys 38:2114–2123
82.
84.
go back to reference Kienzle-Sterzer CA, Rodriguez-Sanchez D, Rha CK (1985) Polym Bull 13:1-6 Kienzle-Sterzer CA, Rodriguez-Sanchez D, Rha CK (1985) Polym Bull 13:1-6
85.
go back to reference Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Blackie Academic, London Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides: theory and applications. Blackie Academic, London
87.
go back to reference Claesson PM, Ninham BW (1992) Langmuir 8:1406–1412 Claesson PM, Ninham BW (1992) Langmuir 8:1406–1412
88.
Metadata
Title
A novel thermally-activated crosslinking agent for chitosan in aqueous solution: a rheological investigation
Authors
Stephen B. Johnson
David E. Dunstan
George V. Franks
Publication date
01-04-2004
Publisher
Springer-Verlag
Published in
Colloid and Polymer Science / Issue 6/2004
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-003-0985-z

Other articles of this Issue 6/2004

Colloid and Polymer Science 6/2004 Go to the issue

Premium Partners