Skip to main content
Top
Published in: Wireless Personal Communications 4/2015

01-12-2015

A Novel Time-Domain Formulation of 3-D Dyadic Diffraction Coefficient for Arbitrary Polarized UWB Signals with Oblique Incidence

Authors: Bajrang Bansal, Sanjay Soni

Published in: Wireless Personal Communications | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new time-domain (TD) three-dimensional dyadic diffraction coefficient is proposed for ultra wideband (UWB) signals with arbitrary polarization and oblique incidence. Simulation results are presented for diffraction by a single wedge, double wedge and building scenario with consecutive diffractions. An excellent agreement of the proposed TD solution with the inverse fast Fourier transform (IFFT) of the corresponding exact frequency-domain (FD) solution proves the validity of the TD solution. Also it is observed that the TD solution is computationally more efficient than the IFFT–FD method. The presented TD solution can be used to analyze diffracted field for arbitrary polarized UWB signals with oblique incidence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.CrossRef Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.CrossRef
2.
go back to reference Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9(1), 282–290.CrossRef Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9(1), 282–290.CrossRef
3.
go back to reference Haneda, K., Richter, A., & Molisch, A. F. (2012). Modeling the frequency dependence of ultra-wideband spatio-temporal indoor radio channels. IEEE Transactions on Antennas and Propagation, 60(6), 2940–2950.MathSciNetCrossRef Haneda, K., Richter, A., & Molisch, A. F. (2012). Modeling the frequency dependence of ultra-wideband spatio-temporal indoor radio channels. IEEE Transactions on Antennas and Propagation, 60(6), 2940–2950.MathSciNetCrossRef
4.
go back to reference Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—part II: Physics-based system analysis. IEEE Transactions on Wireless Communications, 3(6), 2312–2324.CrossRef Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—part II: Physics-based system analysis. IEEE Transactions on Wireless Communications, 3(6), 2312–2324.CrossRef
5.
go back to reference FCC first report and order: In the matter of revision of part 15 of the comparison’s rules regarding ultra-wideband transmission system, FCC 02-48, April 2002. FCC first report and order: In the matter of revision of part 15 of the comparison’s rules regarding ultra-wideband transmission system, FCC 02-48, April 2002.
6.
go back to reference Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.CrossRef Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.CrossRef
7.
go back to reference Win, M. Z., & Scholtz, R. A. (1998). On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(9), 245–247.CrossRef Win, M. Z., & Scholtz, R. A. (1998). On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(9), 245–247.CrossRef
8.
go back to reference Mireles, F. R. (2001). Performance of ultrawideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications, 19(6), 1186–1196.CrossRef Mireles, F. R. (2001). Performance of ultrawideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications, 19(6), 1186–1196.CrossRef
9.
go back to reference Batra, A., et al. (2003). Multi-band OFDM physical layer proposal. Document IEEE 802.15-03/267r2. Batra, A., et al. (2003). Multi-band OFDM physical layer proposal. Document IEEE 802.15-03/267r2.
10.
go back to reference Gorniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.CrossRef Gorniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.CrossRef
11.
go back to reference Qiu, R. C. (2002). A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE Journal on Selected Areas in Communications, 20(9), 1628–1637.CrossRef Qiu, R. C. (2002). A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE Journal on Selected Areas in Communications, 20(9), 1628–1637.CrossRef
12.
go back to reference Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.CrossRef Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.CrossRef
13.
go back to reference Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.CrossRef Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.CrossRef
14.
go back to reference Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modelling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.CrossRef Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modelling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.CrossRef
15.
go back to reference Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.CrossRef Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.CrossRef
16.
go back to reference Bansal, B., & Soni, S. (2014). A new time-domain solution to transmission through a multilayer low-loss dielectric wall structure for UWB signals. Wireless Personal Communications, 79, 581–598.CrossRef Bansal, B., & Soni, S. (2014). A new time-domain solution to transmission through a multilayer low-loss dielectric wall structure for UWB signals. Wireless Personal Communications, 79, 581–598.CrossRef
17.
go back to reference Tewari, P., Soni, S., & Bansal, B. (2014). Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Transactions on Vehicular Technology, 64(2), 541–552. Tewari, P., Soni, S., & Bansal, B. (2014). Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Transactions on Vehicular Technology, 64(2), 541–552.
18.
go back to reference Yang, W., Qinyu, Z., Jie, Z., & Naitong, Z. (2007). Analysis of UWB pulsed field diffracted by a perfectly conducting wedge. In Proceedings of the second IEEE conference on industrial electronics and applications (ICIEA 2007) (pp. 1539–1542), Harbin. Yang, W., Qinyu, Z., Jie, Z., & Naitong, Z. (2007). Analysis of UWB pulsed field diffracted by a perfectly conducting wedge. In Proceedings of the second IEEE conference on industrial electronics and applications (ICIEA 2007) (pp. 1539–1542), Harbin.
19.
go back to reference Veruttipong, T. W. (1990). Time domain version of the uniform GTD. IEEE Transactions on Antennas and Propagation, 38(11), 1757–1764.CrossRef Veruttipong, T. W. (1990). Time domain version of the uniform GTD. IEEE Transactions on Antennas and Propagation, 38(11), 1757–1764.CrossRef
20.
go back to reference Rousseau, P. R., & Pathak, P. H. (1995). Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Antennas and Propagation, 43(12), 1375–1382.CrossRef Rousseau, P. R., & Pathak, P. H. (1995). Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Antennas and Propagation, 43(12), 1375–1382.CrossRef
21.
go back to reference Karousos, A., & Tzaras, C. (2007). Time-domain diffraction for a double wedge obstruction. In IEEE antennas and propagation society international symposium (pp. 4581–4584), Honolulu, HI. Karousos, A., & Tzaras, C. (2007). Time-domain diffraction for a double wedge obstruction. In IEEE antennas and propagation society international symposium (pp. 4581–4584), Honolulu, HI.
22.
go back to reference Liu, P., & Long, Y. (2009). Time domain UTD-PO solution for multiple building diffraction for UWB signals. IEEE Electronics Letters, 45(18), 924–926.CrossRef Liu, P., & Long, Y. (2009). Time domain UTD-PO solution for multiple building diffraction for UWB signals. IEEE Electronics Letters, 45(18), 924–926.CrossRef
23.
go back to reference Han, T., & Long, Y. (2010). Time-domain UTD-PO analysis of a UWB pulse distortion by multiple-building diffraction. IEEE Antennas and Wireless Propagation Letters, 9, 795–798.CrossRef Han, T., & Long, Y. (2010). Time-domain UTD-PO analysis of a UWB pulse distortion by multiple-building diffraction. IEEE Antennas and Wireless Propagation Letters, 9, 795–798.CrossRef
24.
go back to reference Remcom. (2008). Wireless insite, Site-specific radio propagation prediction software user’s manual version 2.3. Remcom. (2008). Wireless insite, Site-specific radio propagation prediction software user’s manual version 2.3.
25.
go back to reference Kouyoumjian, R. G., & Pathak, P. H. (1974). The dyadic diffraction coefficient for a curved edge. Nasa Contractor Report (NASA CR-2401), Washington. Kouyoumjian, R. G., & Pathak, P. H. (1974). The dyadic diffraction coefficient for a curved edge. Nasa Contractor Report (NASA CR-2401), Washington.
26.
go back to reference Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.CrossRef Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.CrossRef
27.
go back to reference Burnside, W. D., & Burgener, K. W. (1983). High frequency scattering by a thin lossless dielectric slab. IEEE Transactions on Antennas and Propagation, AP-31(1), 104–110.CrossRef Burnside, W. D., & Burgener, K. W. (1983). High frequency scattering by a thin lossless dielectric slab. IEEE Transactions on Antennas and Propagation, AP-31(1), 104–110.CrossRef
28.
go back to reference Soni, S., & Bhattacharya, A. (2010). Novel three-dimensional dyadic diffraction coefficient for wireless channel. Microwave and Optical Technology Letters, 52(9), 2132–2136.CrossRef Soni, S., & Bhattacharya, A. (2010). Novel three-dimensional dyadic diffraction coefficient for wireless channel. Microwave and Optical Technology Letters, 52(9), 2132–2136.CrossRef
29.
go back to reference Brigham, E. O. (1988). The fast fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall. Brigham, E. O. (1988). The fast fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall.
30.
go back to reference Sevgi, L. (2007). Numerical Fourier transforms: DFT and FFT. IEEE Antennas and Propagation Magazine, 49(3), 238–243.CrossRef Sevgi, L. (2007). Numerical Fourier transforms: DFT and FFT. IEEE Antennas and Propagation Magazine, 49(3), 238–243.CrossRef
31.
go back to reference Balanis, C. A. (1989). Advanced engineering electromagnetic. New York: Wiley. Balanis, C. A. (1989). Advanced engineering electromagnetic. New York: Wiley.
32.
go back to reference Vandamme, J., Baranowski, S., & Mariage, P. (1995). High frequency diffraction by a dielectric wedge three dimensional study. In Proceedings of the sixth IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’95) (pp. 125–129), Toronto. Vandamme, J., Baranowski, S., & Mariage, P. (1995). High frequency diffraction by a dielectric wedge three dimensional study. In Proceedings of the sixth IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’95) (pp. 125–129), Toronto.
33.
go back to reference Holm, P. D. (2000). A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 48(8), 1211–1219.CrossRef Holm, P. D. (2000). A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 48(8), 1211–1219.CrossRef
34.
go back to reference Luebbers, R. J. (1989). A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211.CrossRef Luebbers, R. J. (1989). A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211.CrossRef
35.
go back to reference Ghavami, M., Michael, L. B., & Kohno, R. (2004). Ultra wideband signals and systems in communication engineering. Chichester: Wiley.CrossRef Ghavami, M., Michael, L. B., & Kohno, R. (2004). Ultra wideband signals and systems in communication engineering. Chichester: Wiley.CrossRef
36.
go back to reference Barnes, P. R., & Tesche, F. M. (1991). On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.CrossRef Barnes, P. R., & Tesche, F. M. (1991). On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.CrossRef
37.
go back to reference Liu, P., Wang, J., & Long, Y. (2009). Time-domain double diffraction for UWB signals. In PIERS proceedings (pp. 848–852), Beijing, China. Liu, P., Wang, J., & Long, Y. (2009). Time-domain double diffraction for UWB signals. In PIERS proceedings (pp. 848–852), Beijing, China.
38.
go back to reference Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.MathSciNetCrossRef Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.MathSciNetCrossRef
Metadata
Title
A Novel Time-Domain Formulation of 3-D Dyadic Diffraction Coefficient for Arbitrary Polarized UWB Signals with Oblique Incidence
Authors
Bajrang Bansal
Sanjay Soni
Publication date
01-12-2015
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2015
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2863-7

Other articles of this Issue 4/2015

Wireless Personal Communications 4/2015 Go to the issue