Skip to main content
Erschienen in: Wireless Personal Communications 4/2015

01.12.2015

A Novel Time-Domain Formulation of 3-D Dyadic Diffraction Coefficient for Arbitrary Polarized UWB Signals with Oblique Incidence

verfasst von: Bajrang Bansal, Sanjay Soni

Erschienen in: Wireless Personal Communications | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new time-domain (TD) three-dimensional dyadic diffraction coefficient is proposed for ultra wideband (UWB) signals with arbitrary polarization and oblique incidence. Simulation results are presented for diffraction by a single wedge, double wedge and building scenario with consecutive diffractions. An excellent agreement of the proposed TD solution with the inverse fast Fourier transform (IFFT) of the corresponding exact frequency-domain (FD) solution proves the validity of the TD solution. Also it is observed that the TD solution is computationally more efficient than the IFFT–FD method. The presented TD solution can be used to analyze diffracted field for arbitrary polarized UWB signals with oblique incidence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.CrossRef Molisch, A. F. (2009). Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2), 353–371.CrossRef
2.
Zurück zum Zitat Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9(1), 282–290.CrossRef Santos, T., Karedal, J., Almers, P., Tufvesson, F., & Molisch, A. F. (2010). Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications, 9(1), 282–290.CrossRef
3.
Zurück zum Zitat Haneda, K., Richter, A., & Molisch, A. F. (2012). Modeling the frequency dependence of ultra-wideband spatio-temporal indoor radio channels. IEEE Transactions on Antennas and Propagation, 60(6), 2940–2950.MathSciNetCrossRef Haneda, K., Richter, A., & Molisch, A. F. (2012). Modeling the frequency dependence of ultra-wideband spatio-temporal indoor radio channels. IEEE Transactions on Antennas and Propagation, 60(6), 2940–2950.MathSciNetCrossRef
4.
Zurück zum Zitat Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—part II: Physics-based system analysis. IEEE Transactions on Wireless Communications, 3(6), 2312–2324.CrossRef Qiu, R. C. (2004). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—part II: Physics-based system analysis. IEEE Transactions on Wireless Communications, 3(6), 2312–2324.CrossRef
5.
Zurück zum Zitat FCC first report and order: In the matter of revision of part 15 of the comparison’s rules regarding ultra-wideband transmission system, FCC 02-48, April 2002. FCC first report and order: In the matter of revision of part 15 of the comparison’s rules regarding ultra-wideband transmission system, FCC 02-48, April 2002.
6.
Zurück zum Zitat Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.CrossRef Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.CrossRef
7.
Zurück zum Zitat Win, M. Z., & Scholtz, R. A. (1998). On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(9), 245–247.CrossRef Win, M. Z., & Scholtz, R. A. (1998). On the energy capture of ultrawide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(9), 245–247.CrossRef
8.
Zurück zum Zitat Mireles, F. R. (2001). Performance of ultrawideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications, 19(6), 1186–1196.CrossRef Mireles, F. R. (2001). Performance of ultrawideband SSMA using time hopping and M-ary PPM. IEEE Journal on Selected Areas in Communications, 19(6), 1186–1196.CrossRef
9.
Zurück zum Zitat Batra, A., et al. (2003). Multi-band OFDM physical layer proposal. Document IEEE 802.15-03/267r2. Batra, A., et al. (2003). Multi-band OFDM physical layer proposal. Document IEEE 802.15-03/267r2.
10.
Zurück zum Zitat Gorniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.CrossRef Gorniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.CrossRef
11.
Zurück zum Zitat Qiu, R. C. (2002). A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE Journal on Selected Areas in Communications, 20(9), 1628–1637.CrossRef Qiu, R. C. (2002). A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE Journal on Selected Areas in Communications, 20(9), 1628–1637.CrossRef
12.
Zurück zum Zitat Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.CrossRef Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver design—Part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.CrossRef
13.
Zurück zum Zitat Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.CrossRef Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.CrossRef
14.
Zurück zum Zitat Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modelling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.CrossRef Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modelling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.CrossRef
15.
Zurück zum Zitat Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.CrossRef Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.CrossRef
16.
Zurück zum Zitat Bansal, B., & Soni, S. (2014). A new time-domain solution to transmission through a multilayer low-loss dielectric wall structure for UWB signals. Wireless Personal Communications, 79, 581–598.CrossRef Bansal, B., & Soni, S. (2014). A new time-domain solution to transmission through a multilayer low-loss dielectric wall structure for UWB signals. Wireless Personal Communications, 79, 581–598.CrossRef
17.
Zurück zum Zitat Tewari, P., Soni, S., & Bansal, B. (2014). Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Transactions on Vehicular Technology, 64(2), 541–552. Tewari, P., Soni, S., & Bansal, B. (2014). Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Transactions on Vehicular Technology, 64(2), 541–552.
18.
Zurück zum Zitat Yang, W., Qinyu, Z., Jie, Z., & Naitong, Z. (2007). Analysis of UWB pulsed field diffracted by a perfectly conducting wedge. In Proceedings of the second IEEE conference on industrial electronics and applications (ICIEA 2007) (pp. 1539–1542), Harbin. Yang, W., Qinyu, Z., Jie, Z., & Naitong, Z. (2007). Analysis of UWB pulsed field diffracted by a perfectly conducting wedge. In Proceedings of the second IEEE conference on industrial electronics and applications (ICIEA 2007) (pp. 1539–1542), Harbin.
19.
Zurück zum Zitat Veruttipong, T. W. (1990). Time domain version of the uniform GTD. IEEE Transactions on Antennas and Propagation, 38(11), 1757–1764.CrossRef Veruttipong, T. W. (1990). Time domain version of the uniform GTD. IEEE Transactions on Antennas and Propagation, 38(11), 1757–1764.CrossRef
20.
Zurück zum Zitat Rousseau, P. R., & Pathak, P. H. (1995). Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Antennas and Propagation, 43(12), 1375–1382.CrossRef Rousseau, P. R., & Pathak, P. H. (1995). Time-domain uniform geometrical theory of diffraction for a curved wedge. IEEE Transactions on Antennas and Propagation, 43(12), 1375–1382.CrossRef
21.
Zurück zum Zitat Karousos, A., & Tzaras, C. (2007). Time-domain diffraction for a double wedge obstruction. In IEEE antennas and propagation society international symposium (pp. 4581–4584), Honolulu, HI. Karousos, A., & Tzaras, C. (2007). Time-domain diffraction for a double wedge obstruction. In IEEE antennas and propagation society international symposium (pp. 4581–4584), Honolulu, HI.
22.
Zurück zum Zitat Liu, P., & Long, Y. (2009). Time domain UTD-PO solution for multiple building diffraction for UWB signals. IEEE Electronics Letters, 45(18), 924–926.CrossRef Liu, P., & Long, Y. (2009). Time domain UTD-PO solution for multiple building diffraction for UWB signals. IEEE Electronics Letters, 45(18), 924–926.CrossRef
23.
Zurück zum Zitat Han, T., & Long, Y. (2010). Time-domain UTD-PO analysis of a UWB pulse distortion by multiple-building diffraction. IEEE Antennas and Wireless Propagation Letters, 9, 795–798.CrossRef Han, T., & Long, Y. (2010). Time-domain UTD-PO analysis of a UWB pulse distortion by multiple-building diffraction. IEEE Antennas and Wireless Propagation Letters, 9, 795–798.CrossRef
24.
Zurück zum Zitat Remcom. (2008). Wireless insite, Site-specific radio propagation prediction software user’s manual version 2.3. Remcom. (2008). Wireless insite, Site-specific radio propagation prediction software user’s manual version 2.3.
25.
Zurück zum Zitat Kouyoumjian, R. G., & Pathak, P. H. (1974). The dyadic diffraction coefficient for a curved edge. Nasa Contractor Report (NASA CR-2401), Washington. Kouyoumjian, R. G., & Pathak, P. H. (1974). The dyadic diffraction coefficient for a curved edge. Nasa Contractor Report (NASA CR-2401), Washington.
26.
Zurück zum Zitat Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.CrossRef Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.CrossRef
27.
Zurück zum Zitat Burnside, W. D., & Burgener, K. W. (1983). High frequency scattering by a thin lossless dielectric slab. IEEE Transactions on Antennas and Propagation, AP-31(1), 104–110.CrossRef Burnside, W. D., & Burgener, K. W. (1983). High frequency scattering by a thin lossless dielectric slab. IEEE Transactions on Antennas and Propagation, AP-31(1), 104–110.CrossRef
28.
Zurück zum Zitat Soni, S., & Bhattacharya, A. (2010). Novel three-dimensional dyadic diffraction coefficient for wireless channel. Microwave and Optical Technology Letters, 52(9), 2132–2136.CrossRef Soni, S., & Bhattacharya, A. (2010). Novel three-dimensional dyadic diffraction coefficient for wireless channel. Microwave and Optical Technology Letters, 52(9), 2132–2136.CrossRef
29.
Zurück zum Zitat Brigham, E. O. (1988). The fast fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall. Brigham, E. O. (1988). The fast fourier transform and its applications. Englewood Cliffs, NJ: Prentice Hall.
30.
Zurück zum Zitat Sevgi, L. (2007). Numerical Fourier transforms: DFT and FFT. IEEE Antennas and Propagation Magazine, 49(3), 238–243.CrossRef Sevgi, L. (2007). Numerical Fourier transforms: DFT and FFT. IEEE Antennas and Propagation Magazine, 49(3), 238–243.CrossRef
31.
Zurück zum Zitat Balanis, C. A. (1989). Advanced engineering electromagnetic. New York: Wiley. Balanis, C. A. (1989). Advanced engineering electromagnetic. New York: Wiley.
32.
Zurück zum Zitat Vandamme, J., Baranowski, S., & Mariage, P. (1995). High frequency diffraction by a dielectric wedge three dimensional study. In Proceedings of the sixth IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’95) (pp. 125–129), Toronto. Vandamme, J., Baranowski, S., & Mariage, P. (1995). High frequency diffraction by a dielectric wedge three dimensional study. In Proceedings of the sixth IEEE international symposium on personal, indoor and mobile radio communications (PIMRC’95) (pp. 125–129), Toronto.
33.
Zurück zum Zitat Holm, P. D. (2000). A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 48(8), 1211–1219.CrossRef Holm, P. D. (2000). A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 48(8), 1211–1219.CrossRef
34.
Zurück zum Zitat Luebbers, R. J. (1989). A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211.CrossRef Luebbers, R. J. (1989). A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211.CrossRef
35.
Zurück zum Zitat Ghavami, M., Michael, L. B., & Kohno, R. (2004). Ultra wideband signals and systems in communication engineering. Chichester: Wiley.CrossRef Ghavami, M., Michael, L. B., & Kohno, R. (2004). Ultra wideband signals and systems in communication engineering. Chichester: Wiley.CrossRef
36.
Zurück zum Zitat Barnes, P. R., & Tesche, F. M. (1991). On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.CrossRef Barnes, P. R., & Tesche, F. M. (1991). On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.CrossRef
37.
Zurück zum Zitat Liu, P., Wang, J., & Long, Y. (2009). Time-domain double diffraction for UWB signals. In PIERS proceedings (pp. 848–852), Beijing, China. Liu, P., Wang, J., & Long, Y. (2009). Time-domain double diffraction for UWB signals. In PIERS proceedings (pp. 848–852), Beijing, China.
38.
Zurück zum Zitat Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.MathSciNetCrossRef Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.MathSciNetCrossRef
Metadaten
Titel
A Novel Time-Domain Formulation of 3-D Dyadic Diffraction Coefficient for Arbitrary Polarized UWB Signals with Oblique Incidence
verfasst von
Bajrang Bansal
Sanjay Soni
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2015
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2863-7

Weitere Artikel der Ausgabe 4/2015

Wireless Personal Communications 4/2015 Zur Ausgabe

Neuer Inhalt