Skip to main content
Top
Published in: Foundations of Computational Mathematics 3/2015

01-06-2015

A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis

Authors: Ricardo H. Nochetto, Enrique Otárola, Abner J. Salgado

Published in: Foundations of Computational Mathematics | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this work is to study solution techniques for problems involving fractional powers of symmetric coercive elliptic operators in a bounded domain with Dirichlet boundary conditions. These operators can be realized as the Dirichlet-to-Neumann map for a degenerate/singular elliptic problem posed on a semi-infinite cylinder, which we analyze in the framework of weighted Sobolev spaces. Motivated by the rapid decay of the solution to this problem, we propose a truncation that is suitable for numerical approximation. We discretize this truncation using first degree tensor product finite elements. We derive a priori error estimates in weighted Sobolev spaces. The estimates exhibit optimal regularity but suboptimal order for quasi-uniform meshes. For anisotropic meshes instead, they are quasi-optimal in both order and regularity. We present numerical experiments to illustrate the method’s performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.
2.
go back to reference G. Acosta. Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math., 135(1):91–109, 2001. G. Acosta. Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math., 135(1):91–109, 2001.
3.
go back to reference R.A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. R.A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.
4.
go back to reference T. Apel. Interpolation of non-smooth functions on anisotropic finite element meshes. M2AN Math. Model. Numer. Anal., 33(6):1149–1185, 1999. T. Apel. Interpolation of non-smooth functions on anisotropic finite element meshes. M2AN Math. Model. Numer. Anal., 33(6):1149–1185, 1999.
5.
go back to reference O.G. Bakunin. Turbulence and diffusion. Springer Series in Synergetics. Springer-Verlag, Berlin, 2008. Scaling versus equations. O.G. Bakunin. Turbulence and diffusion. Springer Series in Synergetics. Springer-Verlag, Berlin, 2008. Scaling versus equations.
6.
7.
go back to reference W. Bangerth, R. Hartmann, and G. Kanschat. deal.II–a general-purpose object-oriented finite element library. ACM Trans. Math. Software, 33(4):Art. 24, 27, 2007. W. Bangerth, R. Hartmann, and G. Kanschat. deal.II–a general-purpose object-oriented finite element library. ACM Trans. Math. Software, 33(4):Art. 24, 27, 2007.
8.
go back to reference P.W. Bates. On some nonlocal evolution equations arising in materials science. In Nonlinear dynamics and evolution equations, volume 48 of Fields Inst. Commun., pages 13–52. Amer. Math. Soc., Providence, RI, 2006. P.W. Bates. On some nonlocal evolution equations arising in materials science. In Nonlinear dynamics and evolution equations, volume 48 of Fields Inst. Commun., pages 13–52. Amer. Math. Soc., Providence, RI, 2006.
9.
go back to reference Z. Belhachmi, Ch. Bernardi, and S. Deparis. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math., 105(2):217–247, 2006. Z. Belhachmi, Ch. Bernardi, and S. Deparis. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math., 105(2):217–247, 2006.
10.
go back to reference D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert. Application of a fractional advection-dispersion equation. Water Resources Res., 36:91–109, 2000. D.A. Benson, S.W. Wheatcraft, and M.M. Meerschaert. Application of a fractional advection-dispersion equation. Water Resources Res., 36:91–109, 2000.
11.
go back to reference C. Bernardi. Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal., 26(5):1212–1240, 1989. C. Bernardi. Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal., 26(5):1212–1240, 1989.
12.
go back to reference J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996. J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.
13.
go back to reference M.Š. Birman and M.Z. Solomjak. Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve. Leningrad. Univ., Leningrad, 1980. M.Š. Birman and M.Z. Solomjak. Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve. Leningrad. Univ., Leningrad, 1980.
14.
go back to reference K. Bogdan, K. Burdy, and Chen Z.Q. Censored stable processes. Probab. Theory Related Fields, 127(R-2):89–152, 2003. K. Bogdan, K. Burdy, and Chen Z.Q. Censored stable processes. Probab. Theory Related Fields, 127(R-2):89–152, 2003.
15.
go back to reference A. Bonito and J.E. Pasciak. Numerical approximation of fractional powers of elliptic operators. Math. Comp. (to appear), 2014. A. Bonito and J.E. Pasciak. Numerical approximation of fractional powers of elliptic operators. Math. Comp. (to appear), 2014.
16.
go back to reference C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez. A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A, 143(1):39–71, 2013. C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez. A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A, 143(1):39–71, 2013.
17.
go back to reference S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008. S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
18.
go back to reference Kevin Burrage, Nicholas Hale, and David Kay. An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput., 34(4):A2145–A2172, 2012. Kevin Burrage, Nicholas Hale, and David Kay. An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput., 34(4):A2145–A2172, 2012.
19.
go back to reference X. Cabré and Y. Sire. Nonlinear equations for fractional Laplacians ii: Existence, uniqueness and qualitative properties of solutions. arXiv:1111.0796v1, 2011. X. Cabré and Y. Sire. Nonlinear equations for fractional Laplacians ii: Existence, uniqueness and qualitative properties of solutions. arXiv:​1111.​0796v1, 2011.
20.
go back to reference X. Cabré and J. Tan. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math., 224(5):2052–2093, 2010. X. Cabré and J. Tan. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math., 224(5):2052–2093, 2010.
21.
go back to reference L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7–9):1245–1260, 2007. L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7–9):1245–1260, 2007.
22.
go back to reference A. Capella, J. Dávila, L. Dupaigne, and Y. Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations, 36(8):1353–1384, 2011. A. Capella, J. Dávila, L. Dupaigne, and Y. Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations, 36(8):1353–1384, 2011.
23.
go back to reference P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. Journal of Business, 75:305–332, 2002. P. Carr, H. Geman, D.B. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. Journal of Business, 75:305–332, 2002.
24.
go back to reference P.G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. P.G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].
25.
go back to reference P.G. Ciarlet and P.-A. Raviart. Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg., 1:217–249, 1972. P.G. Ciarlet and P.-A. Raviart. Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg., 1:217–249, 1972.
26.
go back to reference P. Clément. Approximation by finite element functions using local regularization. RAIRO Analyse Numérique, 9(2):77–84, 1975. P. Clément. Approximation by finite element functions using local regularization. RAIRO Analyse Numérique, 9(2):77–84, 1975.
27.
go back to reference J. Cushman and T. Glinn. Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Trans. Porous Media, 13:123–138, 1993. J. Cushman and T. Glinn. Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Trans. Porous Media, 13:123–138, 1993.
28.
go back to reference E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012. E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.
29.
go back to reference T. Dupont and R. Scott. Polynomial approximation of functions in sobolev spaces. Math. Comp., 34:441–463, 1980. T. Dupont and R. Scott. Polynomial approximation of functions in sobolev spaces. Math. Comp., 34:441–463, 1980.
30.
go back to reference R.G. Durán and A.L. Lombardi. Error estimates on anisotropic \(Q_1\) elements for functions in weighted Sobolev spaces. Math. Comp., 74(252):1679–1706 (electronic), 2005. R.G. Durán and A.L. Lombardi. Error estimates on anisotropic \(Q_1\) elements for functions in weighted Sobolev spaces. Math. Comp., 74(252):1679–1706 (electronic), 2005.
31.
go back to reference R.G. Durán, A.L. Lombardi, and M.I. Prieto. Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes. IMA Journal of Numerical Analysis, 32(2):511–533, 2012. R.G. Durán, A.L. Lombardi, and M.I. Prieto. Superconvergence for finite element approximation of a convection-diffusion equation using graded meshes. IMA Journal of Numerical Analysis, 32(2):511–533, 2012.
32.
go back to reference R.G. Durán and F. López García. Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math., 35(2):421–438, 2010. R.G. Durán and F. López García. Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math., 35(2):421–438, 2010.
33.
go back to reference G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag, Berlin, 1976. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219. G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag, Berlin, 1976. Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219.
34.
go back to reference A.C. Eringen. Nonlocal continuum field theories. Springer-Verlag, New York, 2002. A.C. Eringen. Nonlocal continuum field theories. Springer-Verlag, New York, 2002.
35.
go back to reference L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010. L.C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
36.
go back to reference E. B. Fabes, C.E. Kenig, and R.P. Serapioni. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7(1):77–116, 1982. E. B. Fabes, C.E. Kenig, and R.P. Serapioni. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7(1):77–116, 1982.
37.
go back to reference D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
38.
go back to reference G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multiscale Model. Simul., 7(3):1005–1028, 2008. G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multiscale Model. Simul., 7(3):1005–1028, 2008.
39.
go back to reference V. Gol’dshtein and A. Ukhlov. Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc., 361(7):3829–3850, 2009. V. Gol’dshtein and A. Ukhlov. Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc., 361(7):3829–3850, 2009.
40.
go back to reference Q.Y. Guan and Z.M. Ma. Reflected symmetric \(\alpha \)-stable processes and regional fractional laplacian. Probab. Theory Related Fields, 134(2):649–694, 2006. Q.Y. Guan and Z.M. Ma. Reflected symmetric \(\alpha \)-stable processes and regional fractional laplacian. Probab. Theory Related Fields, 134(2):649–694, 2006.
41.
go back to reference J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.
42.
go back to reference M. Ilic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal., 8(3):323–341, 2005. M. Ilic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal., 8(3):323–341, 2005.
43.
go back to reference M. Ilic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9(4):333–349, 2006. M. Ilic, F. Liu, I. Turner, and V. Anh. Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9(4):333–349, 2006.
44.
go back to reference V.G. Korneev. The construction of variational difference schemes of a high order of accuracy. Vestnik Leningrad. Univ., 25(19):28–40, 1970. (In Russian). V.G. Korneev. The construction of variational difference schemes of a high order of accuracy. Vestnik Leningrad. Univ., 25(19):28–40, 1970. (In Russian).
45.
go back to reference V.G. Korneev and S.E. Ponomarev. Application of curvilinear finite elements in schemes for solution of \(2n\)-order linear elliptic equations. I. Čisl. Metody Meh. Splošn. Sredy, 5(5):78–97, 1974. (In Russian). V.G. Korneev and S.E. Ponomarev. Application of curvilinear finite elements in schemes for solution of \(2n\)-order linear elliptic equations. I. Čisl. Metody Meh. Splošn. Sredy, 5(5):78–97, 1974. (In Russian).
46.
go back to reference A. Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1985. Translated from the Czech. A. Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1985. Translated from the Czech.
47.
go back to reference N.S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180. N.S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
48.
go back to reference J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
49.
go back to reference B.M. McCay and M.N.L. Narasimhan. Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33(3):365–384, 1981. B.M. McCay and M.N.L. Narasimhan. Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33(3):365–384, 1981.
50.
go back to reference W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000. W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000.
51.
go back to reference K.S. Miller and S.G. Samko. Completely monotonic functions. Integral Transform. Spec. Funct., 12(4):389–402, 2001. K.S. Miller and S.G. Samko. Completely monotonic functions. Integral Transform. Spec. Funct., 12(4):389–402, 2001.
52.
go back to reference B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165:207–226, 1972. B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165:207–226, 1972.
53.
54.
go back to reference R.H. Nochetto, E. Otárola, and A.J. Salgado. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and appications. arXiv:1402.1916, 2014. R.H. Nochetto, E. Otárola, and A.J. Salgado. Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and appications. arXiv:​1402.​1916, 2014.
55.
go back to reference G. Savaré. Regularity and perturbation results for mixed second order elliptic problems. Comm. Partial Differential Equations, 22(5–6):869–899, 1997. G. Savaré. Regularity and perturbation results for mixed second order elliptic problems. Comm. Partial Differential Equations, 22(5–6):869–899, 1997.
56.
go back to reference L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990. L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
57.
go back to reference R. Servadei and E. Valdinoci. On the spectrum of two different fractional operators. preprint, 2012. R. Servadei and E. Valdinoci. On the spectrum of two different fractional operators. preprint, 2012.
58.
go back to reference S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, 48(1):175–209, 2000. S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids, 48(1):175–209, 2000.
59.
go back to reference E.M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. E.M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.
60.
go back to reference P.R. Stinga and J.L. Torrea. Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations, 35(11):2092–2122, 2010. P.R. Stinga and J.L. Torrea. Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations, 35(11):2092–2122, 2010.
61.
go back to reference L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin, 2007. L. Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin, 2007.
62.
go back to reference Q. Yang, I. Turner, F. Liu, and M. Ilić. Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput., 33(3):1159–1180, 2011. Q. Yang, I. Turner, F. Liu, and M. Ilić. Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput., 33(3):1159–1180, 2011.
Metadata
Title
A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis
Authors
Ricardo H. Nochetto
Enrique Otárola
Abner J. Salgado
Publication date
01-06-2015
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 3/2015
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9208-x

Other articles of this Issue 3/2015

Foundations of Computational Mathematics 3/2015 Go to the issue

Premium Partner