Skip to main content
Top
Published in: Computational Mechanics 5/2016

01-05-2016 | Original Paper

A peridynamic model for the nonlinear static analysis of truss and tensegrity structures

Authors: Hui Li, Hongwu Zhang, Yonggang Zheng, Liang Zhang

Published in: Computational Mechanics | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A peridynamic model is developed in this paper for the nonlinear static analysis of truss and tensegrity structures. In the present model, the motion equations of material points are established on the current configuration and the pairwise forces are functions of extension and direction of the bonds. The peridynamic parameters are obtained based on the equivalence between the strain energy densities of the peridynamic and classical continuum models. The present model is applied to the mechanical analysis of bimodular truss and tensegrity structures, in which the compressive modulus is set to be zero for the cables. Several representative examples are carried out and the results verify the validity and efficiency of the developed model by comparing with the conventional nonlinear finite element method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Korkmaz SA (2011) A review of active structural control: challenge for engineering informatics. Comput Struct 89:2113–32CrossRef Korkmaz SA (2011) A review of active structural control: challenge for engineering informatics. Comput Struct 89:2113–32CrossRef
2.
go back to reference Domer B, Smith I (2005) An active structure that learns. J Comput Civil Eng 19:16–24CrossRef Domer B, Smith I (2005) An active structure that learns. J Comput Civil Eng 19:16–24CrossRef
3.
go back to reference Ziegler F (2005) Computational aspects of structural shape control. Comput Struct 83:1191–204CrossRef Ziegler F (2005) Computational aspects of structural shape control. Comput Struct 83:1191–204CrossRef
4.
go back to reference Sultan C (2009) Tensegrity: 60 years of art, science, and engineering. Adv Appl Mech 43:69–145CrossRef Sultan C (2009) Tensegrity: 60 years of art, science, and engineering. Adv Appl Mech 43:69–145CrossRef
5.
go back to reference Pugh A (1976) An introduction to tensegrity. Uniersity of California Press, Oakland Pugh A (1976) An introduction to tensegrity. Uniersity of California Press, Oakland
6.
go back to reference Motro R (2003) Tensegrity: structural systems for the future. Kogan Page, LondonCrossRef Motro R (2003) Tensegrity: structural systems for the future. Kogan Page, LondonCrossRef
7.
go back to reference Skelton RE, de Oliveira MC (2009) Tensegrity systems. Springer, New YorkMATH Skelton RE, de Oliveira MC (2009) Tensegrity systems. Springer, New YorkMATH
8.
go back to reference Moored KW, Bart-Smith H (2003) Investigation of clustered actuation in tensegrity structures. Int J Solids Struct 18:209–23MATH Moored KW, Bart-Smith H (2003) Investigation of clustered actuation in tensegrity structures. Int J Solids Struct 18:209–23MATH
9.
go back to reference Pagitz M, Mirats Tur JM (2009) Finite element based form-finding algorithm for tensegrity structures. Int J Solids Struct 46:3235–40CrossRefMATH Pagitz M, Mirats Tur JM (2009) Finite element based form-finding algorithm for tensegrity structures. Int J Solids Struct 46:3235–40CrossRefMATH
10.
go back to reference Tran HC, Lee J (2010) Advanced forming-finding for cable-strut structures. Int J Solids Struct 47:1785–94CrossRefMATH Tran HC, Lee J (2010) Advanced forming-finding for cable-strut structures. Int J Solids Struct 47:1785–94CrossRefMATH
11.
go back to reference Xu X, Luo YZ (2010) Forming-finding of nonregular tensegrities using a genetic algorithm. Mech Res Commun 37:85–91CrossRefMATH Xu X, Luo YZ (2010) Forming-finding of nonregular tensegrities using a genetic algorithm. Mech Res Commun 37:85–91CrossRefMATH
12.
go back to reference Li Y, Feng XQ, Cao YP, Gao HJ (2010) A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int J Solids Struct 47:1888–98CrossRefMATH Li Y, Feng XQ, Cao YP, Gao HJ (2010) A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int J Solids Struct 47:1888–98CrossRefMATH
13.
go back to reference Zhang LY, Li Y, Cao YP, Feng XQ (2014) Stiffness matrix based form-finding method of tensegrity structures. Eng Struct 58:36–48CrossRef Zhang LY, Li Y, Cao YP, Feng XQ (2014) Stiffness matrix based form-finding method of tensegrity structures. Eng Struct 58:36–48CrossRef
14.
go back to reference Zhang HW, Zhang L, Gao Q (2011) An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput Struct 89:2352–60CrossRef Zhang HW, Zhang L, Gao Q (2011) An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle. Comput Struct 89:2352–60CrossRef
15.
go back to reference Zhang HW, Zhang L, Gao Q (2012) Numerical method for dynamic analysis of 2-D bimodular structures. AIAA J 50:1933–42CrossRef Zhang HW, Zhang L, Gao Q (2012) Numerical method for dynamic analysis of 2-D bimodular structures. AIAA J 50:1933–42CrossRef
16.
go back to reference Zhang L, Gao Q, Zhang HW (2013) An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures. Int J Mech Sci 70:57–68CrossRef Zhang L, Gao Q, Zhang HW (2013) An efficient algorithm for mechanical analysis of bimodular truss and tensegrity structures. Int J Mech Sci 70:57–68CrossRef
17.
go back to reference Nineb S, Alart P, Dureisseix D (2007) Domain decomposition approach for non-smooth discrete problems, example of a tensegrity structure. Comput Struct 85:499–511CrossRef Nineb S, Alart P, Dureisseix D (2007) Domain decomposition approach for non-smooth discrete problems, example of a tensegrity structure. Comput Struct 85:499–511CrossRef
18.
go back to reference Oliveto ND, Sivaselvan MV (2011) Dynamic analysis of tensegrity structures using a complementarity framework. Comput Struct 89:2471–83CrossRef Oliveto ND, Sivaselvan MV (2011) Dynamic analysis of tensegrity structures using a complementarity framework. Comput Struct 89:2471–83CrossRef
19.
go back to reference Ali NBH, Rhode-Barbarigos L, Smith IFC (2011) Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int J Solids Struct 48:637–47CrossRefMATH Ali NBH, Rhode-Barbarigos L, Smith IFC (2011) Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. Int J Solids Struct 48:637–47CrossRefMATH
20.
go back to reference Raja MG, Narayanan S (2007) Active control of tensegrity structures under random excitation. Smart Mater Struct 16:809–17CrossRef Raja MG, Narayanan S (2007) Active control of tensegrity structures under random excitation. Smart Mater Struct 16:809–17CrossRef
21.
22.
go back to reference Seleson P, Parks ML, Gunzburger M, Lehoucq RB (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model Simul 8(1):204–27MathSciNetCrossRefMATH Seleson P, Parks ML, Gunzburger M, Lehoucq RB (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model Simul 8(1):204–27MathSciNetCrossRefMATH
23.
24.
go back to reference Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:173–68 Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:173–68
27.
28.
go back to reference Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53:4047–4059CrossRefMATH Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53:4047–4059CrossRefMATH
29.
go back to reference Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231:2764–85MathSciNetCrossRefMATH Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231:2764–85MathSciNetCrossRefMATH
30.
31.
go back to reference Hu W, Ha YD, Bobaru F (2012) Peridynanic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217–220:247–261MathSciNetCrossRefMATH Hu W, Ha YD, Bobaru F (2012) Peridynanic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Eng 217–220:247–261MathSciNetCrossRefMATH
32.
go back to reference Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237:1250–1258CrossRef Gerstle W, Sau N, Silling SA (2007) Peridynamic modeling of concrete structures. Nucl Eng Des 237:1250–1258CrossRef
33.
go back to reference O’Grady J, Foster JT (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51:3177–3183CrossRef O’Grady J, Foster JT (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51:3177–3183CrossRef
34.
go back to reference Katiyar A, Foster JT, Ouchi H, Sharma MM (2014) A peridynamic formulation of pressure driven convective fluid transport in porous media. J Comput Phys 261:209–229MathSciNetCrossRef Katiyar A, Foster JT, Ouchi H, Sharma MM (2014) A peridynamic formulation of pressure driven convective fluid transport in porous media. J Comput Phys 261:209–229MathSciNetCrossRef
35.
go back to reference Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Methods Eng 98:547–561MathSciNetCrossRef Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Methods Eng 98:547–561MathSciNetCrossRef
36.
go back to reference Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. Ph. D. Dissertaion, The University of Arizona, Tucson Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. Ph. D. Dissertaion, The University of Arizona, Tucson
37.
go back to reference Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int J Nonlinear Mech 44:845–854CrossRefMATH Kilic B, Madenci E (2009) Structural stability and failure analysis using peridynamic theory. Int J Nonlinear Mech 44:845–854CrossRefMATH
38.
go back to reference Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:67–94 Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:67–94
39.
go back to reference Underwood P (1983) Dynamic relaxation. In: Achenbach JD, Belytschko T, Bathe KJ (eds) Computational methods for transient analysis, vol 1. Elsevier, Amsterdam, pp 245–265 Underwood P (1983) Dynamic relaxation. In: Achenbach JD, Belytschko T, Bathe KJ (eds) Computational methods for transient analysis, vol 1. Elsevier, Amsterdam, pp 245–265
40.
go back to reference Borst R, Crisfield MA, Remmers JJC, Verhoose CV (2012) Non-linear finite element analysis of solids and structures, 2nd edn. Wiley, ChichesterCrossRef Borst R, Crisfield MA, Remmers JJC, Verhoose CV (2012) Non-linear finite element analysis of solids and structures, 2nd edn. Wiley, ChichesterCrossRef
41.
go back to reference Sultan C, Corless M, Skelton RE (2001) The prestressability problem of tensegrity structures: some analytical solutions. Int J Solids Struct 38:5223–52CrossRefMATH Sultan C, Corless M, Skelton RE (2001) The prestressability problem of tensegrity structures: some analytical solutions. Int J Solids Struct 38:5223–52CrossRefMATH
42.
go back to reference Sultan C, Corless M, Skelton RE (2002) Symmetrical reconfiguration of tensegrity structures. Int J Solids Struct 39:2215–2234CrossRefMATH Sultan C, Corless M, Skelton RE (2002) Symmetrical reconfiguration of tensegrity structures. Int J Solids Struct 39:2215–2234CrossRefMATH
43.
go back to reference Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefMATH
Metadata
Title
A peridynamic model for the nonlinear static analysis of truss and tensegrity structures
Authors
Hui Li
Hongwu Zhang
Yonggang Zheng
Liang Zhang
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2016
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1264-4

Other articles of this Issue 5/2016

Computational Mechanics 5/2016 Go to the issue