Skip to main content
Top
Published in: Computational Mechanics 5/2016

01-05-2016 | Original Paper

Assessment and improvement of mapping algorithms for non-matching meshes and geometries in computational FSI

Authors: Tianyang Wang, Roland Wüchner, Stefan Sicklinger, Kai-Uwe Bletzinger

Published in: Computational Mechanics | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates data mapping between non-matching meshes and geometries in fluid-structure interaction. Mapping algorithms for surface meshes including nearest element interpolation, the standard mortar method and the dual mortar method are studied and comparatively assessed. The inconsistency problem of mortar methods at curved edges of fluid-structure-interfaces is solved by a newly developed enforcing consistency approach, which is robust enough to handle even the case that fluid boundary facets are totally not in contact with structure boundary elements due to high fluid refinement. Besides, tests with representative geometries show that the mortar methods are suitable for conservative mapping but it is better to use the nearest element interpolation in a direct way, and moreover, the dual mortar method can give slight oscillations. This work also develops a co-rotating mapping algorithm for 1D beam elements. Its novelty lies in the ability of handling large displacements and rotations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ahrem R, Beckert A, Wendland H (2007) Recovering rotations in aeroelasticity. J Fluids Struct 23(6):874–884CrossRef Ahrem R, Beckert A, Wendland H (2007) Recovering rotations in aeroelasticity. J Fluids Struct 23(6):874–884CrossRef
2.
go back to reference Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar T (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65(1–3):207–235CrossRefMATH Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar T (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65(1–3):207–235CrossRefMATH
3.
go back to reference Bazilevs Y, Hsu MC, Kiendl J, Wüchner R, Bletzinger KU (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1–3):236–253CrossRefMATH Bazilevs Y, Hsu MC, Kiendl J, Wüchner R, Bletzinger KU (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65(1–3):236–253CrossRefMATH
4.
go back to reference Bazilevs Y, Hsu MC, Scott M (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetCrossRef Bazilevs Y, Hsu MC, Scott M (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41MathSciNetCrossRef
5.
go back to reference Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Model Methods Appl Sci 22(supp02):1230002CrossRefMATH Bazilevs Y, Hsu MC, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Model Methods Appl Sci 22(supp02):1230002CrossRefMATH
6.
go back to reference Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, ChichesterCrossRefMATH
7.
go back to reference Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134CrossRefMATH Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134CrossRefMATH
8.
go back to reference Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications, vol XI. College de France Seminar. Longman, Harlow, pp 13–51 Bernardi C, Maday Y, Patera AT (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis H, Lions JL (eds) Nonlinear partial differential equations and their applications, vol XI. College de France Seminar. Longman, Harlow, pp 13–51
9.
go back to reference Blasques JPAA, Bitsche R, Fedorov V, Eder MA (2013) Applications of the beam cross section analysis software (becas). In: Proceedings of the 26th nordic seminar on computational mechanics, pp 46–49 Blasques JPAA, Bitsche R, Fedorov V, Eder MA (2013) Applications of the beam cross section analysis software (becas). In: Proceedings of the 26th nordic seminar on computational mechanics, pp 46–49
10.
go back to reference Blom FJ (1998) A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167(3):369–391MathSciNetCrossRefMATH Blom FJ (1998) A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167(3):369–391MathSciNetCrossRefMATH
11.
go back to reference de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng 197(49):4284–4297CrossRefMATH de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng 197(49):4284–4297CrossRefMATH
12.
go back to reference Bottasso C, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16(8):1149–1166 Bottasso C, Campagnolo F, Croce A, Tibaldi C (2013) Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy 16(8):1149–1166
13.
go back to reference Brenner SC, Scott R (2008) The mathematical theory of finite element methods, vol 15. Springer, New YorkMATH Brenner SC, Scott R (2008) The mathematical theory of finite element methods, vol 15. Springer, New YorkMATH
14.
go back to reference Chen H, Yu W, Capellaro M (2010) A critical assessment of computer tools for calculating composite wind turbine blade properties. Wind Energy 13(6):497–516CrossRef Chen H, Yu W, Capellaro M (2010) A critical assessment of computer tools for calculating composite wind turbine blade properties. Wind Energy 13(6):497–516CrossRef
15.
go back to reference Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual lagrange multipliers. Comput Methods Appl Mech Eng 200(9):1317–1332MathSciNetCrossRefMATH Cichosz T, Bischoff M (2011) Consistent treatment of boundaries with mortar contact formulations using dual lagrange multipliers. Comput Methods Appl Mech Eng 200(9):1317–1332MathSciNetCrossRefMATH
16.
go back to reference Cordero-Gracia M, Gómez M, Valero E (2014) A radial basis function algorithm for simplified fluid-structure data transfer. Int J Numer Methods Eng 99(12):888–905MathSciNetCrossRef Cordero-Gracia M, Gómez M, Valero E (2014) A radial basis function algorithm for simplified fluid-structure data transfer. Int J Numer Methods Eng 99(12):888–905MathSciNetCrossRef
17.
go back to reference De Rosis A, Falcucci G, Ubertini S, Ubertini F (2013) A coupled lattice boltzmann-finite element approach for two-dimensional fluid-structure interaction. Comput Fluids 86:558–568MathSciNetCrossRefMATH De Rosis A, Falcucci G, Ubertini S, Ubertini F (2013) A coupled lattice boltzmann-finite element approach for two-dimensional fluid-structure interaction. Comput Fluids 86:558–568MathSciNetCrossRefMATH
18.
go back to reference Degroote J, Bruggeman P, Haelterman R, Vierendeels J (2008) Stability of a coupling technique for partitioned solvers in FSI applications. Comput truct 86(23):2224–2234CrossRef Degroote J, Bruggeman P, Haelterman R, Vierendeels J (2008) Stability of a coupling technique for partitioned solvers in FSI applications. Comput truct 86(23):2224–2234CrossRef
19.
go back to reference Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1):95–114MathSciNetCrossRefMATH Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1):95–114MathSciNetCrossRefMATH
20.
go back to reference Farhat C, Van der Zee KG, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195(17):1973–2001MathSciNetCrossRefMATH Farhat C, Van der Zee KG, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195(17):1973–2001MathSciNetCrossRefMATH
21.
go back to reference Felippa C, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. theory. Comput Methods Appl Mech Eng 194(21):2285–2335CrossRefMATH Felippa C, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. theory. Comput Methods Appl Mech Eng 194(21):2285–2335CrossRefMATH
22.
go back to reference Felippa C, Park K, Ross M (2010) A classification of interface treatments for FSI. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid structure interaction II. Springer, Berlin Felippa C, Park K, Ross M (2010) A classification of interface treatments for FSI. In: Bungartz H-J, Mehl M, Schäfer M (eds) Fluid structure interaction II. Springer, Berlin
23.
go back to reference Fernández MÁ, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83(2):127–142CrossRef Fernández MÁ, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83(2):127–142CrossRef
24.
go back to reference Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, ReadingMATH Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, ReadingMATH
25.
go back to reference Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRef Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42(4):285–330CrossRef
26.
go back to reference Hsu MC, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17(3):461–481CrossRef Hsu MC, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17(3):461–481CrossRef
27.
go back to reference Hsu MC, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50(6):821–833MathSciNetCrossRefMATH Hsu MC, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50(6):821–833MathSciNetCrossRefMATH
28.
go back to reference Jaiman R, Jiao X, Geubelle P, Loth E (2006) Conservative load transfer along curved fluid-solid interface with non-matching meshes. J Comput Phys 218(1):372–397CrossRefMATH Jaiman R, Jiao X, Geubelle P, Loth E (2006) Conservative load transfer along curved fluid-solid interface with non-matching meshes. J Comput Phys 218(1):372–397CrossRefMATH
29.
go back to reference Kindmann R, Kraus M (2004) Steel structures: sesign using FEM. Ernst & Sohn, Berlin Kindmann R, Kraus M (2004) Steel structures: sesign using FEM. Ernst & Sohn, Berlin
30.
go back to reference Klöppel T, Popp A, Küttler U, Wall WA (2011) Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation. Comput Methods Appl Mech Eng 200(45):3111–3126MathSciNetCrossRefMATH Klöppel T, Popp A, Küttler U, Wall WA (2011) Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation. Comput Methods Appl Mech Eng 200(45):3111–3126MathSciNetCrossRefMATH
31.
go back to reference Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, CambridgeCrossRefMATH Krenk S (2009) Non-linear modeling and analysis of solids and structures. Cambridge University Press, CambridgeCrossRefMATH
32.
go back to reference Küttler U, Wall WA (2009) Vector extrapolation for strong coupling fluid-structure interaction solvers. J Appl Mech 76(2):021205CrossRef Küttler U, Wall WA (2009) Vector extrapolation for strong coupling fluid-structure interaction solvers. J Appl Mech 76(2):021205CrossRef
33.
go back to reference Li Z, Vu-Quoc L (2010) A mixed co-rotational 3D beam element formulation for arbitrarily large rotations. Adv Steel Constr 6(2):767–787 Li Z, Vu-Quoc L (2010) A mixed co-rotational 3D beam element formulation for arbitrarily large rotations. Adv Steel Constr 6(2):767–787
34.
go back to reference Malcolm DJ, Laird DL (2007) Extraction of equivalent beam properties from blade models. Wind Energy 10(2):135–157CrossRef Malcolm DJ, Laird DL (2007) Extraction of equivalent beam properties from blade models. Wind Energy 10(2):135–157CrossRef
35.
go back to reference Michler C, Van Brummelen E, De Borst R (2005) An interface Newton–Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195CrossRefMATH Michler C, Van Brummelen E, De Borst R (2005) An interface Newton–Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195CrossRefMATH
36.
go back to reference Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions. Int J Numer Methods Fluids 21(10):933–953CrossRefMATH Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions. Int J Numer Methods Fluids 21(10):933–953CrossRefMATH
37.
go back to reference Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. Pattern Anal Mach Intell IEEE Trans 36:2227–2240CrossRef Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. Pattern Anal Mach Intell IEEE Trans 36:2227–2240CrossRef
38.
go back to reference Palacios RS, Cesnik C (2008) Geometrically nonlinear theory of composite beams with deformable cross sections. AIAA J 46(2):439–450CrossRef Palacios RS, Cesnik C (2008) Geometrically nonlinear theory of composite beams with deformable cross sections. AIAA J 46(2):439–450CrossRef
39.
go back to reference Patil MJ, Hodges DH, S Cesnik CE (2001) Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J Aircr 38(1):88–94CrossRef Patil MJ, Hodges DH, S Cesnik CE (2001) Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J Aircr 38(1):88–94CrossRef
40.
go back to reference Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24):3147–3170CrossRefMATH Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24):3147–3170CrossRefMATH
41.
go back to reference Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNetCrossRefMATH Popp A, Seitz A, Gee MW, Wall WA (2013) Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput Methods Appl Mech Eng 264:67–80MathSciNetCrossRefMATH
42.
go back to reference Press W, Teukolsky S, Vetterline W, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, CambridgeMATH Press W, Teukolsky S, Vetterline W, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, CambridgeMATH
43.
go back to reference Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336CrossRefMATH Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336CrossRefMATH
44.
go back to reference Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45):4891–4913MathSciNetCrossRefMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45):4891–4913MathSciNetCrossRefMATH
45.
go back to reference Sicklinger S (2014) Stabilized co-simulation of coupled problems including fields and signals. Ph.D. thesis, Technische Universität München Sicklinger S (2014) Stabilized co-simulation of coupled problems including fields and signals. Ph.D. thesis, Technische Universität München
46.
go back to reference Sicklinger S, Lerch C, Wüchner R, Bletzinger KU (2015) Fully coupled co-simulation of a wind turbine emergency brake maneuver. J Wind Eng Ind Aerodyn 144:134–145CrossRef Sicklinger S, Lerch C, Wüchner R, Bletzinger KU (2015) Fully coupled co-simulation of a wind turbine emergency brake maneuver. J Wind Eng Ind Aerodyn 144:134–145CrossRef
47.
go back to reference Smith MJ, Cesnik CE, Hodges DH (2000) Evaluation of some data transfer algorithms for noncontiguous meshes. J Aerosp Eng 13(2):52–58CrossRef Smith MJ, Cesnik CE, Hodges DH (2000) Evaluation of some data transfer algorithms for noncontiguous meshes. J Aerosp Eng 13(2):52–58CrossRef
48.
go back to reference Streiner S (2011) Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut Streiner S (2011) Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut
49.
go back to reference Takizawa K, Henicke B, Tezduyar TE, Hsu MC, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48(3):333–344CrossRefMATH Takizawa K, Henicke B, Tezduyar TE, Hsu MC, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48(3):333–344CrossRefMATH
50.
go back to reference Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48(3):345–364CrossRefMATH Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48(3):345–364CrossRefMATH
51.
go back to reference Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNetCrossRefMATH Tezduyar T, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNetCrossRefMATH
52.
go back to reference Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRefMATH Tezduyar T, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRefMATH
53.
go back to reference Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191(6):717–726CrossRefMATH Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191(6):717–726CrossRefMATH
54.
go back to reference Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Academic Press, San DiegoMATH Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Academic Press, San DiegoMATH
55.
56.
go back to reference Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17):2002–2027MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17):2002–2027MathSciNetCrossRefMATH
57.
go back to reference Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid-structure interaction modeling of ringsail parachutes. Comput Mech 43(1):133–142CrossRefMATH Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid-structure interaction modeling of ringsail parachutes. Comput Mech 43(1):133–142CrossRefMATH
58.
go back to reference Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41):5743–5753MathSciNetCrossRefMATH Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41):5743–5753MathSciNetCrossRefMATH
59.
go back to reference Unger R, Haupt MC, Horst P (2007) Application of lagrange multipliers for coupled problems in fluid and structural interactions. Comput Struct 85(11):796–809MathSciNetCrossRef Unger R, Haupt MC, Horst P (2007) Application of lagrange multipliers for coupled problems in fluid and structural interactions. Comput Struct 85(11):796–809MathSciNetCrossRef
60.
go back to reference Varello A, Demasi L, Carrera E, Giunta G (2010) An improved beam formulation for aeroelastic applications. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp 12–15 Varello A, Demasi L, Carrera E, Giunta G (2010) An improved beam formulation for aeroelastic applications. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp 12–15
61.
go back to reference Wohlmuth BI (2000) A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J Numer Anal 38(3):989–1012MathSciNetCrossRefMATH Wohlmuth BI (2000) A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J Numer Anal 38(3):989–1012MathSciNetCrossRefMATH
62.
go back to reference Wüchner R, Kupzok A, Bletzinger KU (2007) A framework for stabilized partitioned analysis of thin membrane-wind interaction. Int J Numer Methods Fluids 54(6–8):945–963MathSciNetCrossRefMATH Wüchner R, Kupzok A, Bletzinger KU (2007) A framework for stabilized partitioned analysis of thin membrane-wind interaction. Int J Numer Methods Fluids 54(6–8):945–963MathSciNetCrossRefMATH
63.
go back to reference Wunderlich W, Kiener G (2004) Statik der Stabtragwerke. Vieweg+Teubner Verlag, BerlinCrossRef Wunderlich W, Kiener G (2004) Statik der Stabtragwerke. Vieweg+Teubner Verlag, BerlinCrossRef
Metadata
Title
Assessment and improvement of mapping algorithms for non-matching meshes and geometries in computational FSI
Authors
Tianyang Wang
Roland Wüchner
Stefan Sicklinger
Kai-Uwe Bletzinger
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2016
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1262-6

Other articles of this Issue 5/2016

Computational Mechanics 5/2016 Go to the issue