Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 5/2020

02-03-2020 | Original Article

A-phase classification using convolutional neural networks

Authors: Edgar R. Arce-Santana, Alfonso Alba, Martin O. Mendez, Valdemar Arce-Guevara

Published in: Medical & Biological Engineering & Computing | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task. In the past two decades, various researchers have designed algorithms to automatically detect and classify the A-phases with varying degrees of success, but the problem remains open. In this paper, a different approach is proposed: instead of attempting to design a general classifier for all subjects, we propose to train ad-hoc classifiers for each subject using as little data as possible, in order to drastically reduce the amount of time required from the expert. The proposed classifiers are based on deep convolutional neural networks using the log-spectrogram of the EEG signal as input data. Results are encouraging, achieving average accuracies of 80.31% when discriminating between A-phases and non A-phases, and 71.87% when classifying among A-phase sub-types, with only 25% of the total A-phases used for training. When additional expert-validated data is considered, the sub-type classification accuracy increases to 78.92%. These results show that a semi-automatic annotation system with assistance from an expert could provide a better alternative to fully automatic classifiers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference David F, Dinges FP, Williams K, Gillen KA, Powell JW, Ott GE, Aptowicz C, Pack AI (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20(4):267–277 David F, Dinges FP, Williams K, Gillen KA, Powell JW, Ott GE, Aptowicz C, Pack AI (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20(4):267–277
3.
go back to reference Altevogt BM, Colten HR et al (2006) Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press Altevogt BM, Colten HR et al (2006) Sleep disorders and sleep deprivation: an unmet public health problem. National Academies Press
4.
go back to reference Terzano MG, Parrino L, Smerieri A, Chervin R, Chokroverty S, Guilleminault C, Hirshkowitz M, Mahowald M, Moldofsky H, Rosa A et al (2002) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep. Sleep Med 3(2):187–199PubMedCrossRef Terzano MG, Parrino L, Smerieri A, Chervin R, Chokroverty S, Guilleminault C, Hirshkowitz M, Mahowald M, Moldofsky H, Rosa A et al (2002) Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep. Sleep Med 3(2):187–199PubMedCrossRef
5.
go back to reference Ferini-Strambi L, Bianchi A, Zucconi M, Oldani A, Castronovo V, Smirne S (2000) The impact of cyclic alternating pattern on heart rate variability during sleep in healthy young adults. Clin Neurophysiol 111(1):99–101PubMedCrossRef Ferini-Strambi L, Bianchi A, Zucconi M, Oldani A, Castronovo V, Smirne S (2000) The impact of cyclic alternating pattern on heart rate variability during sleep in healthy young adults. Clin Neurophysiol 111(1):99–101PubMedCrossRef
6.
go back to reference Ferri R, Parrino L, Smerieri A, Terzano MG, Elia M, Musumeci SA, Pettinato S (2000) Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. J Sleep Res 9(1):13–18PubMedCrossRef Ferri R, Parrino L, Smerieri A, Terzano MG, Elia M, Musumeci SA, Pettinato S (2000) Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. J Sleep Res 9(1):13–18PubMedCrossRef
7.
go back to reference Sforza E, Jouny C, Ibanez V (2000) Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 111(9):1611–1619PubMedCrossRef Sforza E, Jouny C, Ibanez V (2000) Cardiac activation during arousal in humans: further evidence for hierarchy in the arousal response. Clin Neurophysiol 111(9):1611–1619PubMedCrossRef
8.
go back to reference Terzano MG, Parrino L (2000) Origin and significance of the cyclic alternating pattern (cap). Sleep Med Rev 4(1):101–123PubMedCrossRef Terzano MG, Parrino L (2000) Origin and significance of the cyclic alternating pattern (cap). Sleep Med Rev 4(1):101–123PubMedCrossRef
9.
go back to reference Terzano MG, Parrino L (1993) Clinical applications of cyclic alternating pattern. Physiol Behav 54(4):807–813PubMedCrossRef Terzano MG, Parrino L (1993) Clinical applications of cyclic alternating pattern. Physiol Behav 54(4):807–813PubMedCrossRef
10.
go back to reference Ferri R, Bruni O, Miano S, Smerieri A, Spruyt K, Terzano MG (2005) Inter-rater reliability of sleep cyclic alternating pattern (cap) scoring and validation of a new computer-assisted cap scoring method. Clin Neurophysiol 116(3):696–707PubMedCrossRef Ferri R, Bruni O, Miano S, Smerieri A, Spruyt K, Terzano MG (2005) Inter-rater reliability of sleep cyclic alternating pattern (cap) scoring and validation of a new computer-assisted cap scoring method. Clin Neurophysiol 116(3):696–707PubMedCrossRef
11.
go back to reference Ferri R, Bruni O, Miano S, Plazzi G, Terzano MG (2005) All-night eeg power spectral analysis of the cyclic alternating pattern components in young adult subjects. Clin Neurophysiol 116(10):2429–2440PubMedCrossRef Ferri R, Bruni O, Miano S, Plazzi G, Terzano MG (2005) All-night eeg power spectral analysis of the cyclic alternating pattern components in young adult subjects. Clin Neurophysiol 116(10):2429–2440PubMedCrossRef
12.
go back to reference De Carli F, Nobili L, Beelke M, Watanabe T, Smerieri A, Parrino L (2004) Mario Giovanni Terzano, and Franco Ferrillo. Quantitative analysis of sleep eeg microstructure in the time–frequency domain. Brain Res Bull 63(5):399–405PubMedCrossRef De Carli F, Nobili L, Beelke M, Watanabe T, Smerieri A, Parrino L (2004) Mario Giovanni Terzano, and Franco Ferrillo. Quantitative analysis of sleep eeg microstructure in the time–frequency domain. Brain Res Bull 63(5):399–405PubMedCrossRef
13.
go back to reference Navona C, Barcaro U, Bonanni E, Di Martino F, Maestri M, Murri L (2002) An automatic method for the recognition and classification of the a-phases of the cyclic alternating pattern. Clin Neurophysiol 113(11):1826–1831PubMedCrossRef Navona C, Barcaro U, Bonanni E, Di Martino F, Maestri M, Murri L (2002) An automatic method for the recognition and classification of the a-phases of the cyclic alternating pattern. Clin Neurophysiol 113(11):1826–1831PubMedCrossRef
14.
go back to reference Mariani S, Grassi A, Mendez MO, Parrino L, Terzano MG, Bianchi AM (2011) Automatic detection of cap on central and fronto-central eeg leads via support vector machines. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1491–1494. IEEECrossRef Mariani S, Grassi A, Mendez MO, Parrino L, Terzano MG, Bianchi AM (2011) Automatic detection of cap on central and fronto-central eeg leads via support vector machines. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1491–1494. IEEECrossRef
15.
go back to reference Mariani S, Manfredini E, Rosso V, Grassi A, Mendez MO, Alba A, Matteucci M, Parrino L, Terzano MG, Cerutti S et al (2012) Efficient automatic classifiers for the detection of a phases of the cyclic alternating pattern in sleep. Med Biol Eng Comput 50(4):359–372PubMedCrossRef Mariani S, Manfredini E, Rosso V, Grassi A, Mendez MO, Alba A, Matteucci M, Parrino L, Terzano MG, Cerutti S et al (2012) Efficient automatic classifiers for the detection of a phases of the cyclic alternating pattern in sleep. Med Biol Eng Comput 50(4):359–372PubMedCrossRef
16.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press
17.
go back to reference Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed 161:1–13PubMedCrossRef Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed 161:1–13PubMedCrossRef
18.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
20.
go back to reference Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification. Comput Biol Med 96:189–202PubMedCrossRef Yildirim Ö (2018) A novel wavelet sequence based on deep bidirectional lstm network model for ecg signal classification. Comput Biol Med 96:189–202PubMedCrossRef
21.
go back to reference Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396PubMedCrossRef Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396PubMedCrossRef
22.
go back to reference Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ecg signals. Comput Biol Med 102:411–420PubMedCrossRef Yıldırım Ö, Pławiak P, Tan R-S, Acharya UR (2018) Arrhythmia detection using deep convolutional neural network with long duration ecg signals. Comput Biol Med 102:411–420PubMedCrossRef
23.
go back to reference Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for parkinson’s disease diagnosis from eeg signals. Neural Comput Appl:1–7 Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for parkinson’s disease diagnosis from eeg signals. Neural Comput Appl:1–7
24.
go back to reference Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals. Comput Biol Med 100:270–278PubMedCrossRef Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals. Comput Biol Med 100:270–278PubMedCrossRef
25.
go back to reference Yıldırım Ö, Baloglu UB, Acharya UR (2018) A deep convolutional neural network model for automated identification of abnormal eeg signals. Neural Comput Appl:1–12 Yıldırım Ö, Baloglu UB, Acharya UR (2018) A deep convolutional neural network model for automated identification of abnormal eeg signals. Neural Comput Appl:1–12
26.
go back to reference Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G, Sanei S, Took CC (2018) Deep neural architectures for mapping scalp to intracranial eeg. Int J Neural Syst 28(08):1850009PubMedCrossRef Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G, Sanei S, Took CC (2018) Deep neural architectures for mapping scalp to intracranial eeg. Int J Neural Syst 28(08):1850009PubMedCrossRef
27.
go back to reference Supratak A, Dong H, Wu C, Guo Y (2017) Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg. IEEE Transac Neural Syst Rehabil Eng 25(11):1998–2008CrossRef Supratak A, Dong H, Wu C, Guo Y (2017) Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg. IEEE Transac Neural Syst Rehabil Eng 25(11):1998–2008CrossRef
28.
go back to reference Tsinalis O, Matthews PM, Guo Y (2016) Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann Biomed Eng 44(5):1587–1597PubMedCrossRef Tsinalis O, Matthews PM, Guo Y (2016) Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann Biomed Eng 44(5):1587–1597PubMedCrossRef
29.
go back to reference Tripathy RK, Acharya UR (2018) Use of features from rr-time series and eeg signals for automated classification of sleep stages in deep neural network framework. Biocybernetics Biomed Eng 38(4):890–902CrossRef Tripathy RK, Acharya UR (2018) Use of features from rr-time series and eeg signals for automated classification of sleep stages in deep neural network framework. Biocybernetics Biomed Eng 38(4):890–902CrossRef
30.
go back to reference Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transac Neural Syst Rehabil Eng 26(4):758–769CrossRef Chambon S, Galtier MN, Arnal PJ, Wainrib G, Gramfort A (2018) A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Transac Neural Syst Rehabil Eng 26(4):758–769CrossRef
31.
go back to reference Michielli N, Acharya UR, Molinari F (2019) Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals. Comput Biol Med 106:71–81PubMedCrossRef Michielli N, Acharya UR, Molinari F (2019) Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals. Comput Biol Med 106:71–81PubMedCrossRef
32.
go back to reference Rosa AC, Parrino L, Terzano MG (1999) Automatic detection of cyclic alternating pattern (cap) sequences in sleep: preliminary results. Clin Neurophysiol 110(4):585–592PubMedCrossRef Rosa AC, Parrino L, Terzano MG (1999) Automatic detection of cyclic alternating pattern (cap) sequences in sleep: preliminary results. Clin Neurophysiol 110(4):585–592PubMedCrossRef
33.
go back to reference Rosa AC, Kemp B, Paiva T, da Silva FHL, Kamphuisen HAC (1991) A model-based detector of vertex waves and k complexes in sleep electroencephalogram. Electroencephal Clin Neurophysiol 78(1):71–79CrossRef Rosa AC, Kemp B, Paiva T, da Silva FHL, Kamphuisen HAC (1991) A model-based detector of vertex waves and k complexes in sleep electroencephalogram. Electroencephal Clin Neurophysiol 78(1):71–79CrossRef
34.
go back to reference Barcaro U, Bonanni E, Maestri M, Murri L, Parrino L, Terzano MG (2004) A general automatic method for the analysis of nrem sleep microstructure. Sleep Med 5(6):567–576PubMedCrossRef Barcaro U, Bonanni E, Maestri M, Murri L, Parrino L, Terzano MG (2004) A general automatic method for the analysis of nrem sleep microstructure. Sleep Med 5(6):567–576PubMedCrossRef
35.
go back to reference Mendez MO, Alba A, Chouvarda I, Milioli G, Grassi A, Terzano MG, Parrino L (2014) On separability of a-phases during the cyclic alternating pattern. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2253–2256. IEEECrossRef Mendez MO, Alba A, Chouvarda I, Milioli G, Grassi A, Terzano MG, Parrino L (2014) On separability of a-phases during the cyclic alternating pattern. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2253–2256. IEEECrossRef
36.
go back to reference Mendez MO, Chouvarda I, Alba A, Bianchi AM, Grassi A, Arce-Santana E, Milioli G, Terzano MG, Parrino L (2016) Analysis of a-phase transitions during the cyclic alternating pattern under normal sleep. Med Biol Eng Comput 54(1):133–148PubMedCrossRef Mendez MO, Chouvarda I, Alba A, Bianchi AM, Grassi A, Arce-Santana E, Milioli G, Terzano MG, Parrino L (2016) Analysis of a-phase transitions during the cyclic alternating pattern under normal sleep. Med Biol Eng Comput 54(1):133–148PubMedCrossRef
37.
go back to reference Karimzadeh F, Seraj E, Boostani R, Torabi-Nami M (2015) Presenting efficient features for automatic cap detection in sleep eeg signals. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp 448–452. IEEECrossRef Karimzadeh F, Seraj E, Boostani R, Torabi-Nami M (2015) Presenting efficient features for automatic cap detection in sleep eeg signals. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp 448–452. IEEECrossRef
38.
go back to reference Mendonça F, Fred A (2018) Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, and Antonio G Ravelo-García. Automatic detection of cyclic alternating pattern. Neural Comput & Applic:1–11 Mendonça F, Fred A (2018) Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, and Antonio G Ravelo-García. Automatic detection of cyclic alternating pattern. Neural Comput & Applic:1–11
39.
go back to reference Machado F, Teixeira C, Santos C, Bento C, Sales F, Dourado A (2016) A-phases subtype detection using different classification methods. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1026–1029. IEEECrossRef Machado F, Teixeira C, Santos C, Bento C, Sales F, Dourado A (2016) A-phases subtype detection using different classification methods. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1026–1029. IEEECrossRef
40.
go back to reference Machado F, Sales F, Santos C, Dourado A, Teixeira CA (2018) A knowledge discovery methodology from eeg data for cyclic alternating pattern detection. Biomed Eng Online 17(1):185PubMedPubMedCentralCrossRef Machado F, Sales F, Santos C, Dourado A, Teixeira CA (2018) A knowledge discovery methodology from eeg data for cyclic alternating pattern detection. Biomed Eng Online 17(1):185PubMedPubMedCentralCrossRef
41.
go back to reference Mostafa SS, Mendonça F, Ravelo-García A, Morgado-Dias F (2018) Combination of deep and shallow networks for cyclic alternating patterns detection. In: 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), pp 98–103. IEEECrossRef Mostafa SS, Mendonça F, Ravelo-García A, Morgado-Dias F (2018) Combination of deep and shallow networks for cyclic alternating patterns detection. In: 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO), pp 98–103. IEEECrossRef
42.
go back to reference Hartmann S, Baumert M (2019) Automatic a-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Transac Neural Syst Rehabil Eng 27(9):1695–1703CrossRef Hartmann S, Baumert M (2019) Automatic a-phase detection of cyclic alternating patterns in sleep using dynamic temporal information. IEEE Transac Neural Syst Rehabil Eng 27(9):1695–1703CrossRef
43.
go back to reference Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220PubMedCrossRef Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220PubMedCrossRef
44.
go back to reference Conrad Iber The aasm manual for the scoring of sleep and associated events: rules. Terminology and Technical Specification, 2007 Conrad Iber The aasm manual for the scoring of sleep and associated events: rules. Terminology and Technical Specification, 2007
45.
go back to reference Haghighi-Mood A, Torry JN (1997) Time frequency analysis of systolic murmurs. time-frequency analysis of biomedical signals. In: IEE Colloquium on Year, pp 2/1–2/3. IEE Haghighi-Mood A, Torry JN (1997) Time frequency analysis of systolic murmurs. time-frequency analysis of biomedical signals. In: IEE Colloquium on Year, pp 2/1–2/3. IEE
46.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, pp 1097–1105. NIPS Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, pp 1097–1105. NIPS
47.
go back to reference I. Arel, D. Rose, and T. Karnowski. Deep machine learning–a new frontier in artificial intelligence research [research frontier]. IEEE Comput Int Mag, 5:13–18, 2010 I. Arel, D. Rose, and T. Karnowski. Deep machine learning–a new frontier in artificial intelligence research [research frontier]. IEEE Comput Int Mag, 5:13–18, 2010
48.
go back to reference Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 Computer Vision and Pattern Recognition (CVPR), pp 3642–3649. IEEE Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 Computer Vision and Pattern Recognition (CVPR), pp 3642–3649. IEEE
Metadata
Title
A-phase classification using convolutional neural networks
Authors
Edgar R. Arce-Santana
Alfonso Alba
Martin O. Mendez
Valdemar Arce-Guevara
Publication date
02-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 5/2020
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-020-02144-6

Other articles of this Issue 5/2020

Medical & Biological Engineering & Computing 5/2020 Go to the issue

Premium Partner