Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 5/2020

19-03-2020 | Original Article

Paths of the cervical instantaneous axis of rotation during active movements—patterns and reliability

Authors: William Venegas, Marta Inglés, Álvaro Page, Pilar Serra-Añó

Published in: Medical & Biological Engineering & Computing | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The instantaneous helical axis (IHA) is a characteristic of neck movement that is very sensitive to changes in coordination and that has potential in the assessment of functional alterations. For its application in the clinical setting, normative patterns must be available, and its reliability must be established. The purpose of this work is to describe the continuous paths of the IHA during cyclic movements of flexion-extension (FE), lateral bending (LB), and axial rotation (AR) and to quantify their reliability. Fifteen healthy volunteers participated in the study; two repetitions were made on the same day (by different operators) and over an 8-day interval (by the same operator) to evaluate the inter-operator and inter-session reliability, respectively. The paths described by the IHA suggest a sequential movement of the vertebrae in the FE movement, with a large vertical displacement (mean, 10 cm). The IHA displacement in LB and AR movements are smaller. The paths described by the IHAs have a very high reliability for FE movement, although it is somewhat lower for LB and RA movements. The standard error of measurement (SEM) is less than 0.5 cm. These results show that the paths of the IHA are reliable enough to evaluate changes in the coordination of intervertebral movement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304CrossRef Snodgrass SJ, Cleland JA, Haskins R, Rivett DA et al (2014) The clinical utility of cervical range of motion in diagnosis, prognosis, and evaluating the effects of manipulation: a systematic review. Physiotherapy 100:290–304CrossRef
2.
go back to reference Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434CrossRef Stenneberg MS, Rood M, de Bie R et al (2017) To what degree does active cervical range of motion differ between patients with neck pain, patients with whiplash, and those without neck pain? A systematic review and meta-analysis. Arch Phys Med Rehabil 8:1407–1434CrossRef
3.
go back to reference van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269CrossRef van Trijffel E, Anderegg Q, Bossuyt PMM, Lucas C (2005) Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther 10:256–269CrossRef
4.
go back to reference Bahat HS, Chen X, Reznik D et al (2015) Interactive cervical motion kinematics: sensitivity. specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther 20:295–302CrossRef Bahat HS, Chen X, Reznik D et al (2015) Interactive cervical motion kinematics: sensitivity. specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain. Man Ther 20:295–302CrossRef
5.
go back to reference Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clin Biomech 26:29–34CrossRef Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM (2011) Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clin Biomech 26:29–34CrossRef
6.
go back to reference Röijezon U, Djupsjöbacka M, Björklund M et al (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222CrossRef Röijezon U, Djupsjöbacka M, Björklund M et al (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222CrossRef
7.
go back to reference Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain—range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13:122–131CrossRef Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain—range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13:122–131CrossRef
8.
go back to reference Michiels S, De Hertogh W, Truijen S et al (2013) The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture 38:1–7CrossRef Michiels S, De Hertogh W, Truijen S et al (2013) The assessment of cervical sensory motor control: a systematic review focusing on measuring methods and their clinimetric characteristics. Gait Posture 38:1–7CrossRef
9.
go back to reference de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ (2017) Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil 98:1257–1271CrossRef de Zoete RM, Osmotherly PG, Rivett DA, Farrell SF, Snodgrass SJ (2017) Sensorimotor control in individuals with idiopathic neck pain and healthy individuals: a systematic review and meta-analysis. Arch Phys Med Rehabil 98:1257–1271CrossRef
10.
go back to reference Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432CrossRef Woltring HJ, Long K, Osterbauer PJ, Fuhr AW (1994) Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J Biomech 27:1415–1432CrossRef
11.
go back to reference Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48:1286–1293CrossRef Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading. J Biomech 48:1286–1293CrossRef
12.
go back to reference Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 46:670–676CrossRef Baillargeon E, Anderst WJ (2013) Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 46:670–676CrossRef
13.
go back to reference Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRef
14.
go back to reference Page A, de Rosario H, Mata V, Porcar R, Solaz J, Such MJ (2009) Kinematics of the trunk in sitting posture: an analysis based on the instantaneous axis of rotation. Ergonomics 52:695–706CrossRef Page A, de Rosario H, Mata V, Porcar R, Solaz J, Such MJ (2009) Kinematics of the trunk in sitting posture: an analysis based on the instantaneous axis of rotation. Ergonomics 52:695–706CrossRef
15.
go back to reference Page A, de Rosario H, Gálvez JA, Mata V (2011) Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J Biomech 44:747–750CrossRef Page A, de Rosario H, Gálvez JA, Mata V (2011) Representation of planar motion of complex joints by means of rolling pairs. Application to neck motion. J Biomech 44:747–750CrossRef
16.
go back to reference Ellingson AM, Yelisetti V, Schulz CA, Bronfort G, Downing J, Keefe DF, Nuckley DJ (2013) Instantaneous helical axis methodology to identify aberrant neck motion. Clin Biomech 28:731–735CrossRef Ellingson AM, Yelisetti V, Schulz CA, Bronfort G, Downing J, Keefe DF, Nuckley DJ (2013) Instantaneous helical axis methodology to identify aberrant neck motion. Clin Biomech 28:731–735CrossRef
17.
go back to reference Grip H, Sundelin G, Gerdle B, Karlsson JS (2007) Variations in the axis of motion during head repositioning–a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. Clin Biomech 22:865–873CrossRef Grip H, Sundelin G, Gerdle B, Karlsson JS (2007) Variations in the axis of motion during head repositioning–a comparison of subjects with whiplash-associated disorders or non-specific neck pain and healthy controls. Clin Biomech 22:865–873CrossRef
18.
go back to reference Grip H, Sundelin G, Gerdle B, Karlsson JS (2008) Cervical helical axis characteristics and its center of rotation during active head and upper arm movements—comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J Biomech 41:2799–2805CrossRef Grip H, Sundelin G, Gerdle B, Karlsson JS (2008) Cervical helical axis characteristics and its center of rotation during active head and upper arm movements—comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals. J Biomech 41:2799–2805CrossRef
19.
go back to reference Alsultan F, Cescon C, De Nunzio A et al (2019) Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech 62:50–57CrossRef Alsultan F, Cescon C, De Nunzio A et al (2019) Variability of the helical axis during active cervical movements in people with chronic neck pain. Clin Biomech 62:50–57CrossRef
20.
go back to reference Barbero M, Falla D, Clijsen R, Ghirlanda F, Schneebeli A, Ernst MJ, Cescon C (2017) Can parameters of the helical axis be measured reliably during active cervical movements? Musculoskelet Sci Pract 27:150–154CrossRef Barbero M, Falla D, Clijsen R, Ghirlanda F, Schneebeli A, Ernst MJ, Cescon C (2017) Can parameters of the helical axis be measured reliably during active cervical movements? Musculoskelet Sci Pract 27:150–154CrossRef
21.
22.
go back to reference Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378CrossRef Page A, Galvez JA, de Rosario H, Mata V, Prat J (2010) Optimal average path of the instantaneous helical axis in planar motions with one functional degree of freedom. J Biomech 43:375–378CrossRef
23.
go back to reference Page A, de Rosario H, Mata V et al (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 44:1113CrossRef Page A, de Rosario H, Mata V et al (2006) Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Med Biol Eng Comput 44:1113CrossRef
24.
go back to reference Díaz-Rodríguez M, Valera A, Page A et al (2016) Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J Biomech Eng 138:051009CrossRef Díaz-Rodríguez M, Valera A, Page A et al (2016) Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex. J Biomech Eng 138:051009CrossRef
25.
go back to reference Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion. A vector method to determine finite and infinitesimal displacements from point coordinates. J Mech Des 131:031005CrossRef Page A, de Rosario H, Mata V, Atienza C (2009) Experimental analysis of rigid body motion. A vector method to determine finite and infinitesimal displacements from point coordinates. J Mech Des 131:031005CrossRef
26.
go back to reference Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27:1399–1414CrossRef Woltring HJ (1994) 3-D attitude representation of human joints: a standardization proposal. J Biomech 27:1399–1414CrossRef
27.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35:543–548CrossRef Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I, Standardization and Terminology Committee of the International Society of Biomechanics (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech 35:543–548CrossRef
28.
go back to reference Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240PubMed Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240PubMed
29.
go back to reference Garofalo P, Cutti AG, Filipi MV et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus inc clinical settings. Med Biol Eng Comput 47:475–486CrossRef Garofalo P, Cutti AG, Filipi MV et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus inc clinical settings. Med Biol Eng Comput 47:475–486CrossRef
30.
go back to reference Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, Defebvre L (2004) Statistical tools for clinical gait analysis. Gait Posture 20:204–212CrossRef Duhamel A, Bourriez JL, Devos P, Krystkowiak P, Destée A, Derambure P, Defebvre L (2004) Statistical tools for clinical gait analysis. Gait Posture 20:204–212CrossRef
31.
go back to reference Jaspers E, Feys H, Bruyninckx H, Harlaar J, Molenaers G, Desloovere K (2011) Upper limb kinematics: development and reliability of a clinical protocol for children. Gait Posture 33:279–285CrossRef Jaspers E, Feys H, Bruyninckx H, Harlaar J, Molenaers G, Desloovere K (2011) Upper limb kinematics: development and reliability of a clinical protocol for children. Gait Posture 33:279–285CrossRef
32.
go back to reference Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manip Physiol Ther 23:180–195CrossRef Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manip Physiol Ther 23:180–195CrossRef
33.
go back to reference de Koning CH, van den Heuvel SP, Staal JB, Smits-Engelsman BC, Hendriks EJ (2008) Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review. Eur Spine J 17:905–921CrossRef de Koning CH, van den Heuvel SP, Staal JB, Smits-Engelsman BC, Hendriks EJ (2008) Clinimetric evaluation of active range of motion measures in patients with non-specific neck pain: a systematic review. Eur Spine J 17:905–921CrossRef
34.
go back to reference Williams MA, McCarthy CJ, Chorti A et al (2010) A systematic review of reliability and validity studies of methods for measuring active and passive cervical range of motion. J Manip Physiol Ther 33:138–155CrossRef Williams MA, McCarthy CJ, Chorti A et al (2010) A systematic review of reliability and validity studies of methods for measuring active and passive cervical range of motion. J Manip Physiol Ther 33:138–155CrossRef
35.
go back to reference Tsang SM, Szeto GP, Lee RY (2013) Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain. Clin Biomech 28:610–617CrossRef Tsang SM, Szeto GP, Lee RY (2013) Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain. Clin Biomech 28:610–617CrossRef
36.
go back to reference Michiels S, Hallemans A, Van de Heyning P et al (2014) Measurement of cervical sensorimotor control: the reliability of a continuous linear movement test. Man Ther 19:399–404CrossRef Michiels S, Hallemans A, Van de Heyning P et al (2014) Measurement of cervical sensorimotor control: the reliability of a continuous linear movement test. Man Ther 19:399–404CrossRef
37.
go back to reference Bahat HS, Sprecher E, Sela I, Treleaven J (2016) Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J 25:2139–2148CrossRef Bahat HS, Sprecher E, Sela I, Treleaven J (2016) Neck motion kinematics: an inter-tester reliability study using an interactive neck VR assessment in asymptomatic individuals. Eur Spine J 25:2139–2148CrossRef
38.
go back to reference Assink N, Bergman GJ, Knoester B et al (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manip Physiol Ther 28:408–413CrossRef Assink N, Bergman GJ, Knoester B et al (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manip Physiol Ther 28:408–413CrossRef
39.
go back to reference Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality following arthrodesis. Spine 38:E594–E601CrossRef Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J (2013) Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality following arthrodesis. Spine 38:E594–E601CrossRef
Metadata
Title
Paths of the cervical instantaneous axis of rotation during active movements—patterns and reliability
Authors
William Venegas
Marta Inglés
Álvaro Page
Pilar Serra-Añó
Publication date
19-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 5/2020
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-020-02153-5

Other articles of this Issue 5/2020

Medical & Biological Engineering & Computing 5/2020 Go to the issue

Premium Partner