Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2016

15-10-2015 | RESEARCH PAPER

A piezoelectric model based multi-objective optimization of robot gripper design

Authors: Rituparna Datta, Ajinkya Jain, Bishakh Bhattacharya

Published in: Structural and Multidisciplinary Optimization | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The field of robotics is evolving at a very high pace and with its increasing applicability in varied fields, the need to incorporate optimization analysis in robot system design is becoming more prominent. The present work deals with the optimization of the design of a 7-link gripper. As actuators play a crucial role in functioning of the gripper, the actuation system (piezoelectric (PZ), in this case) is also taken into consideration while performing the optimization study. A minimalistic model of PZ actuator, consisting different series and parallel assembly arrangements for both mechanical and electrical parts of the PZ actuators, is proposed. To include the effects of connector spring, the relationship of force with actuator displacement is replaced by the relation between force and the displacement of point of actuation at the physical system. The design optimization problem of the gripper is a non-linear, multi modal optimization problem, which was originally formulated by Osyczka (2002). In the original work, however, the actuator was a ‘constant output-force actuator model’ providing a constant output without describing the internal structure. Thus, the actuator model was not integrated in the optimization study. Four different cases of the PZ modelling have been solved using multi-objective evolutionary algorithm (MOEA). Relationship between force and actuator displacement is obtained using each set of non-dominated solutions. These relationships can provide a better insight to the end user to select the appropriate voltage and gripper design for specific application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
All serial numbers refer to the respective product numbers of the company Physik Instrumente (PI) GmbH & Co. KG, Germany
 
Literature
go back to reference Adriaens H, De Koning W, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Transactions on Mechatronics 5(4):331–341CrossRef Adriaens H, De Koning W, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Transactions on Mechatronics 5(4):331–341CrossRef
go back to reference Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1 Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1
go back to reference Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76(1):347–363CrossRef Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76(1):347–363CrossRef
go back to reference Bicchi A, Kumar V (2000) Robotic grasping and contact: A review. In: ICRA. Citeseer, pp 348–353 Bicchi A, Kumar V (2000) Robotic grasping and contact: A review. In: ICRA. Citeseer, pp 348–353
go back to reference Chang T, Sun X (2001) Analysis and control of monolithic piezoelectric nano-actuator. IEEE Trans Control Syst Technol 9(1):69–75CrossRef Chang T, Sun X (2001) Analysis and control of monolithic piezoelectric nano-actuator. IEEE Trans Control Syst Technol 9(1):69–75CrossRef
go back to reference Chee CY, Tong L, Steven GP (1998) A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J Intell Mater Syst Struct 9(1):3–19CrossRef Chee CY, Tong L, Steven GP (1998) A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J Intell Mater Syst Struct 9(1):3–19CrossRef
go back to reference Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11):2145–2187CrossRef Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40(11):2145–2187CrossRef
go back to reference Ciocarlie M, Allen P (2010) Data-driven optimization for underactuated robotic hands. In: IEEE International Conference on Robotics and Automation (ICRA), 2010. IEEE, pp 1292–1299 Ciocarlie M, Allen P (2010) Data-driven optimization for underactuated robotic hands. In: IEEE International Conference on Robotics and Automation (ICRA), 2010. IEEE, pp 1292–1299
go back to reference Ciocarlie M, Hicks FM, Holmberg R, Hawke J, Schlicht M, Gee J, Stanford S, Bahadur R (2014) The velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps. Int J Robot Res 33(5):753–767CrossRef Ciocarlie M, Hicks FM, Holmberg R, Hawke J, Schlicht M, Gee J, Stanford S, Bahadur R (2014) The velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps. Int J Robot Res 33(5):753–767CrossRef
go back to reference Croft D, Devasia S (1998) Hysteresis and vibration compensation for piezoactuators. J Guid Control Dyn 21(5):710–717CrossRef Croft D, Devasia S (1998) Hysteresis and vibration compensation for piezoactuators. J Guid Control Dyn 21(5):710–717CrossRef
go back to reference Datta R, Bittermann M.S, Deb K, Ciftcioglu O (2012) Probabilistic constraint handling in the framework of joint evolutionary-classical optimization with engineering applications. In: IEEE Congress on Evolutionary Computation (CEC), 2012. IEEE, pp 1–8 Datta R, Bittermann M.S, Deb K, Ciftcioglu O (2012) Probabilistic constraint handling in the framework of joint evolutionary-classical optimization with engineering applications. In: IEEE Congress on Evolutionary Computation (CEC), 2012. IEEE, pp 1–8
go back to reference Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. ACM, pp 1843–1850 Datta R, Deb K (2011) Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. ACM, pp 1843–1850
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197CrossRef
go back to reference Deb K, Srinivasan A (2006) Innovization: Innovating design principles through optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 1629– 1636 Deb K, Srinivasan A (2006) Innovization: Innovating design principles through optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 1629– 1636
go back to reference Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst 17(3):69–79CrossRefMATH Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst 17(3):69–79CrossRefMATH
go back to reference Goldfarb M, Celanovic N (1999) A flexure-based gripper for small-scale manipulation. Robotica 17 (02):181–187CrossRef Goldfarb M, Celanovic N (1999) A flexure-based gripper for small-scale manipulation. Robotica 17 (02):181–187CrossRef
go back to reference Gu G-Y, Zhu L-M, Su C-Y, Ding H (2013) Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation. IEEE/ASME Transactions on Mechatronics 18(5):1459–1471CrossRef Gu G-Y, Zhu L-M, Su C-Y, Ding H (2013) Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation. IEEE/ASME Transactions on Mechatronics 18(5):1459–1471CrossRef
go back to reference Hagood NW, Chung WH, Von Flotow A (1990) Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst Struct 1(3):327–354CrossRef Hagood NW, Chung WH, Von Flotow A (1990) Modelling of piezoelectric actuator dynamics for active structural control. J Intell Mater Syst Struct 1(3):327–354CrossRef
go back to reference Harres D (2013) MSP430-based robot applications: a guide to developing embedded systems. Newnes Harres D (2013) MSP430-based robot applications: a guide to developing embedded systems. Newnes
go back to reference IEEE standard (1987) I.E.E.E. Standard on Piezoelectricity: An American National Standard. I.E.E.E. Transactions on sonics and ultrasonics. IEEE IEEE standard (1987) I.E.E.E. Standard on Piezoelectricity: An American National Standard. I.E.E.E. Transactions on sonics and ultrasonics. IEEE
go back to reference Irschik H (2002) A review on static and dynamic shape control of structures by piezoelectric actuation. Eng Struct 24(1):5–11CrossRef Irschik H (2002) A review on static and dynamic shape control of structures by piezoelectric actuation. Eng Struct 24(1):5–11CrossRef
go back to reference Jain A, Datta R, Bhattacharya B (2015) Unified minimalistic modelling of piezoelectric stack actuators for engineering applications. In: Robot Intelligence Technology and Applications 3. Springer, pp 459–473 Jain A, Datta R, Bhattacharya B (2015) Unified minimalistic modelling of piezoelectric stack actuators for engineering applications. In: Robot Intelligence Technology and Applications 3. Springer, pp 459–473
go back to reference Krenich S (2004) Multicriteria design optimization of robot gripper mechanisms. In: IUTAM Symposium on Evolutionary Methods in Mechanics. Springer, pp 207–218 Krenich S (2004) Multicriteria design optimization of robot gripper mechanisms. In: IUTAM Symposium on Evolutionary Methods in Mechanics. Springer, pp 207–218
go back to reference Liaw HC, Shirinzadeh B, Smith J (2008) Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans Control Syst Technol 16(4):826–833CrossRef Liaw HC, Shirinzadeh B, Smith J (2008) Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans Control Syst Technol 16(4):826–833CrossRef
go back to reference Low T, Guo W (1995) Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J Microelectromech Syst 4(4):230–237CrossRef Low T, Guo W (1995) Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J Microelectromech Syst 4(4):230–237CrossRef
go back to reference Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization. Physica-Verlag, HeidelbergMATH Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization. Physica-Verlag, HeidelbergMATH
go back to reference Osyczka A, Krenich S (2001) Evolutionary algorithms for multicriteria optimization with selecting a representative subset of pareto optimal solutions. In: Evolutionary Multi-Criterion Optimization. Springer, pp 141–153 Osyczka A, Krenich S (2001) Evolutionary algorithms for multicriteria optimization with selecting a representative subset of pareto optimal solutions. In: Evolutionary Multi-Criterion Optimization. Springer, pp 141–153
go back to reference Osyczka A, Krenich S, Karas K (1999) Optimum design of robot grippers using genetic algorithms. In: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization (WCSMO), Buffalo, New York, pp 241–243 Osyczka A, Krenich S, Karas K (1999) Optimum design of robot grippers using genetic algorithms. In: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization (WCSMO), Buffalo, New York, pp 241–243
go back to reference Pérez R, Agnus J, Clévy C, Hubert A, Chaillet N (2005) Modeling, fabrication, and validation of a high-performance 2-dof piezoactuator for micromanipulation. IEEE/ASME Transactions on Mechatronics 10 (2):161–171CrossRef Pérez R, Agnus J, Clévy C, Hubert A, Chaillet N (2005) Modeling, fabrication, and validation of a high-performance 2-dof piezoactuator for micromanipulation. IEEE/ASME Transactions on Mechatronics 10 (2):161–171CrossRef
go back to reference Rao R, Savsani V, Vakharia D (2011) Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef Rao R, Savsani V, Vakharia D (2011) Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef
go back to reference Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer Science & Business Media Rao RV, Savsani VJ (2012) Mechanical design optimization using advanced optimization techniques. Springer Science & Business Media
go back to reference Reddy PVP, Suresh VS (2013) A review on importance of universal gripper in industrial robot applications Reddy PVP, Suresh VS (2013) A review on importance of universal gripper in industrial robot applications
go back to reference Saravanan R, Ramabalan S, Ebenezer N, Dharmaraja C (2009) Evolutionary multi criteria design optimization of robot grippers. Appl Soft Comput 9(1):159–172CrossRef Saravanan R, Ramabalan S, Ebenezer N, Dharmaraja C (2009) Evolutionary multi criteria design optimization of robot grippers. Appl Soft Comput 9(1):159–172CrossRef
go back to reference Shikhar P (2014) Analysis and design optimization of a seven link robot gripper with an integrated actuation system. Master’s thesis, IIT Kanpur Shikhar P (2014) Analysis and design optimization of a seven link robot gripper with an integrated actuation system. Master’s thesis, IIT Kanpur
go back to reference Tzen J-J, Jeng S-L, Chieng W-H (2003) Modeling of piezoelectric actuator for compensation and controller design. Precis Eng 27(1):70–86CrossRef Tzen J-J, Jeng S-L, Chieng W-H (2003) Modeling of piezoelectric actuator for compensation and controller design. Precis Eng 27(1):70–86CrossRef
go back to reference Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sensors Actuators A Phys 150(2):257–266CrossRef Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sensors Actuators A Phys 150(2):257–266CrossRef
Metadata
Title
A piezoelectric model based multi-objective optimization of robot gripper design
Authors
Rituparna Datta
Ajinkya Jain
Bishakh Bhattacharya
Publication date
15-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2016
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1340-y

Other articles of this Issue 3/2016

Structural and Multidisciplinary Optimization 3/2016 Go to the issue

Premium Partners