Skip to main content
Top
Published in: Wireless Networks 2/2019

14-09-2017

A realistic mobility model with irregular obstacle constraints for mobile ad hoc networks

Authors: Wei Wang, Jiajun Wang, Mingming Wang, Beizhan Wang, Wenjing Zhang

Published in: Wireless Networks | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nature of mobile ad hoc networks (MANETs) makes simulation research provide invaluable support for investigating mobile networking protocols, services and applications. Mobility is one of the main factors in simulation of MANETs, due to the fact that it has a strong impact on the design and performance of the networks. Mobility modeling has been an active field for the past decade, mostly focusing on matching a specific mobility or encounter metric with little focus on matching irregular obstacle constraints in realistic scenarios. Consequently, the existing mobility models (MMs) are almost unrealistic. On the other hand, the lack of systemic evaluation framework for MMs makes the mobility characteristics of MANETs be not properly evaluated. In this paper, a realistic mobility model based on Bezier curves (RMBC) is presented. The model operates in an irregular obstacle environment which restricts node movement and wireless transmission. In the RMBC model, a mobile node can calculate smooth pathways between the obstacles using the Bezier curve characterized by control points. Moreover, the flexible movement manners and the realistic application characteristics determined by RMBC are derived and analyzed, respectively. In order to effectively compare the proposed MM with several classical MMs, an integrated and systemic evaluation framework with a multi-dimensional mobility metric space is achieved. The simulation using NS2 tool is conducted. The results show that the proposed MM performs significantly better than the existing MMs in terms of mobility characteristics of MANETs in realistic scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lauf, A. P., & Robinson, W. H. (2013). Resilient and efficient MANET aerial communications for search and rescue applications. In Proceeding of 2013 international conference on computing, networking and communications (ICNC), San Diego, USA. Lauf, A. P., & Robinson, W. H. (2013). Resilient and efficient MANET aerial communications for search and rescue applications. In Proceeding of 2013 international conference on computing, networking and communications (ICNC), San Diego, USA.
2.
go back to reference Gupta, V., Verma, A., Lala, A., & Chaurasia, A. (2013). Scenario based performance and comparative simulation analysis of routing protocols in MANET. International Journal of Computer Science and Network Security, 13(6), 98–104. Gupta, V., Verma, A., Lala, A., & Chaurasia, A. (2013). Scenario based performance and comparative simulation analysis of routing protocols in MANET. International Journal of Computer Science and Network Security, 13(6), 98–104.
3.
go back to reference Zhang, L., Lakas, A., El-Sayed, H., & Barka, E. (2013). Mobility analysis in vehicular ad hoc network (VANET). Journal of Network and Computer Applications, 36(3), 1050–1056.CrossRef Zhang, L., Lakas, A., El-Sayed, H., & Barka, E. (2013). Mobility analysis in vehicular ad hoc network (VANET). Journal of Network and Computer Applications, 36(3), 1050–1056.CrossRef
4.
go back to reference Kim, K. (2013). An architecture to generate realistic mobility trace through verified flight simulator. International Journal of Software Engineering and Its Applications, 7(2), 287–293.MathSciNet Kim, K. (2013). An architecture to generate realistic mobility trace through verified flight simulator. International Journal of Software Engineering and Its Applications, 7(2), 287–293.MathSciNet
5.
go back to reference Alshanyour, A., & Baroudi, U. (2010). A simulation study: The impact of random and realistic mobility models on the performance of bypass-AODV in ad hoc wireless networks. EURASIP Journal on Wireless Communications and Networking, 2010, 1–5.CrossRef Alshanyour, A., & Baroudi, U. (2010). A simulation study: The impact of random and realistic mobility models on the performance of bypass-AODV in ad hoc wireless networks. EURASIP Journal on Wireless Communications and Networking, 2010, 1–5.CrossRef
6.
go back to reference Ting, W., & Low, C. P. (2012). Evaluating inter-arrival time in general random waypoint mobility model. Ad Hoc Networks, 2012, 123–136. Ting, W., & Low, C. P. (2012). Evaluating inter-arrival time in general random waypoint mobility model. Ad Hoc Networks, 2012, 123–136.
7.
go back to reference Chowdhury, K. R., & Melodia, T. (2010). Platforms and testbeds for experimental evaluation of cognitive ad hoc networks. IEEE Communications Magazine, 48(9), 96–104.CrossRef Chowdhury, K. R., & Melodia, T. (2010). Platforms and testbeds for experimental evaluation of cognitive ad hoc networks. IEEE Communications Magazine, 48(9), 96–104.CrossRef
8.
go back to reference Bekmezci, I., Sahingoz, O. K., & Temel, S. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(2013), 1254–1270.CrossRef Bekmezci, I., Sahingoz, O. K., & Temel, S. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(2013), 1254–1270.CrossRef
9.
go back to reference Khairnar, V. D., & Pradhan, S. N. (2010). Mobility models for vehicular ad hoc network simulation. International Journal of Computer Applications, 11(4), 8–12.CrossRef Khairnar, V. D., & Pradhan, S. N. (2010). Mobility models for vehicular ad hoc network simulation. International Journal of Computer Applications, 11(4), 8–12.CrossRef
10.
go back to reference Qian, C., & Liang, Z. (2012). The properties of T-Bezier curves and its applications. International Journal of Advance Computer Technology, 4(7), 53–60.CrossRef Qian, C., & Liang, Z. (2012). The properties of T-Bezier curves and its applications. International Journal of Advance Computer Technology, 4(7), 53–60.CrossRef
11.
go back to reference Yang, G. J., & Byoung, W. C. (2013). Smooth trajectory planning along Bezier curve for mobile robots with velocity constraints. International Journal of Control and Automation, 6(2), 225–234. Yang, G. J., & Byoung, W. C. (2013). Smooth trajectory planning along Bezier curve for mobile robots with velocity constraints. International Journal of Control and Automation, 6(2), 225–234.
12.
go back to reference Kumar-S, S., & Suman, C. S. B. (2011). Classification and evaluation of mobility metrics for mobility model movement patterns in mobile ad-hoc networks. International Journal on Applications of Graph Theory in Wireless Ad Hoc and Sensor Networks (GRAPH-HOC), 3(3), 25–38.CrossRef Kumar-S, S., & Suman, C. S. B. (2011). Classification and evaluation of mobility metrics for mobility model movement patterns in mobile ad-hoc networks. International Journal on Applications of Graph Theory in Wireless Ad Hoc and Sensor Networks (GRAPH-HOC), 3(3), 25–38.CrossRef
13.
go back to reference Vasanthi, V., Romen, K. M., Ajith, S. N., & Hemalatha, M. (2011). A detailed study of mobility models in wireless sensor networks. Journal of Theoretical and Applied Information Technology, 33(1), 7–14. Vasanthi, V., Romen, K. M., Ajith, S. N., & Hemalatha, M. (2011). A detailed study of mobility models in wireless sensor networks. Journal of Theoretical and Applied Information Technology, 33(1), 7–14.
14.
go back to reference Khider, I., Furong, W., WeiHua, Y., & Sacko. (2006). An overview of geographic restriction mobility models. Ubiquitous Computing and Communication Journal, 1(1), 1–9. Khider, I., Furong, W., WeiHua, Y., & Sacko. (2006). An overview of geographic restriction mobility models. Ubiquitous Computing and Communication Journal, 1(1), 1–9.
15.
go back to reference Younes, O., & Thomas, N. (2013). A path connection availability model for manets with random waypoint mobility. In Proceeding of the 9th european conference on computer performance engineering, Munich, Germany. Younes, O., & Thomas, N. (2013). A path connection availability model for manets with random waypoint mobility. In Proceeding of the 9th european conference on computer performance engineering, Munich, Germany.
16.
go back to reference Bettstetter, C. (2003). Opology properties of ad hoc networks with random waypoint mobility. ACM SIGMOBILE Mobile Computing and Communications Review, 7(2003), 50–52.CrossRef Bettstetter, C. (2003). Opology properties of ad hoc networks with random waypoint mobility. ACM SIGMOBILE Mobile Computing and Communications Review, 7(2003), 50–52.CrossRef
17.
go back to reference Christian, B., Giovanni, R., & Paolo, S. (2003). The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(2003), 257–269. Christian, B., Giovanni, R., & Paolo, S. (2003). The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(2003), 257–269.
18.
go back to reference Royer, E.M., Melliar-Smith, P.M., & Moser, L.E. (2001). An analysis of the optimum node density for ad hoc mobile networks. In Proceedings of the IEEE international conference on communications (ICC’01), Helsinki, Finland. Royer, E.M., Melliar-Smith, P.M., & Moser, L.E. (2001). An analysis of the optimum node density for ad hoc mobile networks. In Proceedings of the IEEE international conference on communications (ICC’01), Helsinki, Finland.
19.
go back to reference Sreenivasulu, K., & Srinivasulu, A. L. (2011). Improving routing efficiency based on random direction mobility model in manets. International Journal of Smart Sensors and Ad Hoc Networks, 1(1), 38–46. Sreenivasulu, K., & Srinivasulu, A. L. (2011). Improving routing efficiency based on random direction mobility model in manets. International Journal of Smart Sensors and Ad Hoc Networks, 1(1), 38–46.
20.
go back to reference Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks, 10(5), 555–567.CrossRef Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks, 10(5), 555–567.CrossRef
21.
go back to reference Liang, B., & Haas, Z. (1999). Predictive distance-based mobility management for PCS networks. In Proceeding of 18th Annual joint conference of the IEEE computer and communications societies (INFOCOM’99), Vol. 3, New York. Liang, B., & Haas, Z. (1999). Predictive distance-based mobility management for PCS networks. In Proceeding of 18th Annual joint conference of the IEEE computer and communications societies (INFOCOM’99), Vol. 3, New York.
22.
go back to reference Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 2(5), 483–502. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 2(5), 483–502.
23.
go back to reference Ahmed, S., Karmakar, G. C., & Kamruzzaman, J. (2010). An environment-aware mobility model for wireless ad hoc network. Computer Networks, 54(2010), 1470–1489.MATHCrossRef Ahmed, S., Karmakar, G. C., & Kamruzzaman, J. (2010). An environment-aware mobility model for wireless ad hoc network. Computer Networks, 54(2010), 1470–1489.MATHCrossRef
24.
go back to reference Jardosh, A., Belding-Royer, E., Almeroth, K., & Suri, S. (2005). Real-world environment models for mobile network evaluation. IEEE Journal on Selected Areas in Communications, 23(2005), 622–632.CrossRef Jardosh, A., Belding-Royer, E., Almeroth, K., & Suri, S. (2005). Real-world environment models for mobile network evaluation. IEEE Journal on Selected Areas in Communications, 23(2005), 622–632.CrossRef
25.
go back to reference Tian, J., Haehner, J., Becker, C., Stepanov, I., & Rothermel, K. (2012). Graph-based mobility model for mobile ad hoc network simulation. In Proceeding of 35th annual simulation symposium, in cooperation with the IEEE computer society and ACM, San Diego, California. Tian, J., Haehner, J., Becker, C., Stepanov, I., & Rothermel, K. (2012). Graph-based mobility model for mobile ad hoc network simulation. In Proceeding of 35th annual simulation symposium, in cooperation with the IEEE computer society and ACM, San Diego, California.
26.
go back to reference Shohrab-Hossain, M., & Atiquzzaman, M. (2009). Stochastic properties and application of city section mobility model. In Proceedings of the 28th IEEE conference on global telecommunications (GLOBECOM’09), Piscataway, NJ, USA. Shohrab-Hossain, M., & Atiquzzaman, M. (2009). Stochastic properties and application of city section mobility model. In Proceedings of the 28th IEEE conference on global telecommunications (GLOBECOM’09), Piscataway, NJ, USA.
27.
go back to reference Papageorgiou, C., Birkos, K., Dagiuklas, T., & Kotsopoulos, S. (2012). Modeling human mobility in obstacle-constrained ad hoc networks. Ad Hoc Networks, 10(2012), 421–434.CrossRef Papageorgiou, C., Birkos, K., Dagiuklas, T., & Kotsopoulos, S. (2012). Modeling human mobility in obstacle-constrained ad hoc networks. Ad Hoc Networks, 10(2012), 421–434.CrossRef
28.
go back to reference Pilu C., Miriam D. I., Andrea M., Gianluca R., & Paola V.(2009). Spatial node distribution of manhattan path based random waypoint mobility models with applications. In Proceedings of the 16th international conference on structural information and communication Complexity, Piran, Slovenia (pp. 154–166). Pilu C., Miriam D. I., Andrea M., Gianluca R., & Paola V.(2009). Spatial node distribution of manhattan path based random waypoint mobility models with applications. In Proceedings of the 16th international conference on structural information and communication Complexity, Piran, Slovenia (pp. 154–166).
29.
go back to reference Wei, W., Xiaohong, G., Beizhan, W., & Yaping, W. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(2010), 399–413. Wei, W., Xiaohong, G., Beizhan, W., & Yaping, W. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(2010), 399–413.
30.
go back to reference Cavalcanti, E. R., & Spohn, M. A. (2010). Improved spatial and temporal mobility metrics for mobile ad hoc networks. In The 4th international conference on mobile ubiquitous computing, systems, services and technologies (pp. 189–195). Cavalcanti, E. R., & Spohn, M. A. (2010). Improved spatial and temporal mobility metrics for mobile ad hoc networks. In The 4th international conference on mobile ubiquitous computing, systems, services and technologies (pp. 189–195).
31.
go back to reference Karyotis, V., Manolakos, A., & Papavassiliou, A. S. (2010). On topology control and non-uniform node deployment in ad hoc networks. In 8th IEEE international conference on pervasive computing and communications workshops, Mannheim, Germany (pp. 522–527). Karyotis, V., Manolakos, A., & Papavassiliou, A. S. (2010). On topology control and non-uniform node deployment in ad hoc networks. In 8th IEEE international conference on pervasive computing and communications workshops, Mannheim, Germany (pp. 522–527).
32.
go back to reference Lalar, S. (2013). Obstacle detection sensors: A survey. International Journal of Current Engineering and Technology, 3(5), 2138–2142. Lalar, S. (2013). Obstacle detection sensors: A survey. International Journal of Current Engineering and Technology, 3(5), 2138–2142.
33.
go back to reference Jiméneza, F. Eugenio, & Naranjob, J. (2011). Improving the obstacle detection and identification algorithms of a laserscanner-based collision avoidance system. Transportation Research Part C: Emerging Technologies, 19(4), 658–672.CrossRef Jiméneza, F. Eugenio, & Naranjob, J. (2011). Improving the obstacle detection and identification algorithms of a laserscanner-based collision avoidance system. Transportation Research Part C: Emerging Technologies, 19(4), 658–672.CrossRef
34.
go back to reference Yan, L., Ding, X., Zheng, Y., Kong, J., & Liu, J. (2013). A novel identification method of obstacles based on multi-sensor data fusion in forest. Sensors & Transducers, 155(8), 39–46. Yan, L., Ding, X., Zheng, Y., Kong, J., & Liu, J. (2013). A novel identification method of obstacles based on multi-sensor data fusion in forest. Sensors & Transducers, 155(8), 39–46.
35.
go back to reference Zhou, F., Song, B., & Tian, G. (2011). Bezier curve based smooth path planning for mobile robot. Journal of Information & Computational Science, 8(12), 2441–2450. Zhou, F., Song, B., & Tian, G. (2011). Bezier curve based smooth path planning for mobile robot. Journal of Information & Computational Science, 8(12), 2441–2450.
36.
go back to reference Thakur, G. S., & Helmy, A. (2013). COBRA: A framework for the analysis of realistic mobility models. In IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Turin (pp. 145–150). Thakur, G. S., & Helmy, A. (2013). COBRA: A framework for the analysis of realistic mobility models. In IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Turin (pp. 145–150).
37.
go back to reference Danoy, G., Matthias R., & Brust, P. B. (2015). Connectivity stability in autonomous multi-level UAV swarms for wide area monitoring. In The Fifth ACM international symposium on development and analysis of intelligent vehicular networks and application, Cancun, Mexico (pp. 1–8). Danoy, G., Matthias R., & Brust, P. B. (2015). Connectivity stability in autonomous multi-level UAV swarms for wide area monitoring. In The Fifth ACM international symposium on development and analysis of intelligent vehicular networks and application, Cancun, Mexico (pp. 1–8).
38.
go back to reference Yujun, Z., Qi, H., Zhongcheng, L.,& Jie, T.(2012). Design and performance study of a Topology-Hiding Multipath Routing protocol for mobile ad hoc networks. In Proceedings of INFOCOM, Orlando, Florida, USA, Vol. 131, no. 5 (pp. 10–18). Yujun, Z., Qi, H., Zhongcheng, L.,& Jie, T.(2012). Design and performance study of a Topology-Hiding Multipath Routing protocol for mobile ad hoc networks. In Proceedings of INFOCOM, Orlando, Florida, USA, Vol. 131, no. 5 (pp. 10–18).
39.
go back to reference Amol, R. K., & Nilesh, S. V.(2015). Comparative analysis of AODV and AODV-TPRD reactive routing protocol in MANET. In International conference on electrical, signals, communication and optimization (pp. 1–5). Amol, R. K., & Nilesh, S. V.(2015). Comparative analysis of AODV and AODV-TPRD reactive routing protocol in MANET. In International conference on electrical, signals, communication and optimization (pp. 1–5).
40.
go back to reference Viqar, S., & Welch, J. L. (2013). Deterministic collision free communication despite continuous motion. Ad Hoc Networks, 11(2013), 508–521.CrossRef Viqar, S., & Welch, J. L. (2013). Deterministic collision free communication despite continuous motion. Ad Hoc Networks, 11(2013), 508–521.CrossRef
41.
go back to reference Zhu, Y., Zhang, T., Song, J., Li, X., & Nakamura, M. (2012). A new method for mobile robots to avoid collision with moving obstacle. Artificial Life and Robotics, 16(4), 507–510.CrossRef Zhu, Y., Zhang, T., Song, J., Li, X., & Nakamura, M. (2012). A new method for mobile robots to avoid collision with moving obstacle. Artificial Life and Robotics, 16(4), 507–510.CrossRef
42.
go back to reference Matveev, A. S., Chao, W., & Savkin, A. V. (2012). Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles. Robotics and Autonomous Systems, 60(6), 769–788.CrossRef Matveev, A. S., Chao, W., & Savkin, A. V. (2012). Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles. Robotics and Autonomous Systems, 60(6), 769–788.CrossRef
43.
go back to reference Jardosh, A., Belding-Royer, E. M., Almeroth, K. C., & Suri, S. (2003). Towards realistic mobility models for mobile ad hoc networks. In Proceedings of ninth annual international conference on mobile computing and networking (MobiCom 2003), San Diego, CA. Jardosh, A., Belding-Royer, E. M., Almeroth, K. C., & Suri, S. (2003). Towards realistic mobility models for mobile ad hoc networks. In Proceedings of ninth annual international conference on mobile computing and networking (MobiCom 2003), San Diego, CA.
44.
go back to reference Yueh-Ting, W., Wanjiun, L., Cheng-Lin, T., & Tsung-Nan, L. (2009). Impact of node mobility on link duration in multihop mobile networks. IEEE Transactions on Vehicular Technology, 58(5), 2435–2442.CrossRef Yueh-Ting, W., Wanjiun, L., Cheng-Lin, T., & Tsung-Nan, L. (2009). Impact of node mobility on link duration in multihop mobile networks. IEEE Transactions on Vehicular Technology, 58(5), 2435–2442.CrossRef
45.
go back to reference Oliveira, R., Luís, M., Furtado, A., Bernardoa, L., Dinisa, R., & Pinto, P. (2013). Improving path duration in high mobility vehicular ad hoc networks. Ad Hoc Networks, 11(1), 89–103.CrossRef Oliveira, R., Luís, M., Furtado, A., Bernardoa, L., Dinisa, R., & Pinto, P. (2013). Improving path duration in high mobility vehicular ad hoc networks. Ad Hoc Networks, 11(1), 89–103.CrossRef
46.
go back to reference Jeongseo, P., Jinsoo, C., & Taekeun, P. (2012). The impact of disjoint multiple paths on SCTP in the connected MANET for emergency situations. IEICE Transactions on Communications, E95-B(3), 1011–1014.CrossRef Jeongseo, P., Jinsoo, C., & Taekeun, P. (2012). The impact of disjoint multiple paths on SCTP in the connected MANET for emergency situations. IEICE Transactions on Communications, E95-B(3), 1011–1014.CrossRef
47.
go back to reference Kuiper, E., & Nadjm-Tehrani, S. (2006). Mobility models for UAV group reconnaissance applications. In Proceedings of the international conference on wireless and mobile communications (ICWMC’06), Bucharest, Romania. Kuiper, E., & Nadjm-Tehrani, S. (2006). Mobility models for UAV group reconnaissance applications. In Proceedings of the international conference on wireless and mobile communications (ICWMC’06), Bucharest, Romania.
48.
go back to reference Sunho, L., Chansu, Y., & Chita, R. (2010). A realistic mobility model for wireless networks of scale-free node connectivity. International Journal of Mobile Communications, 8(3), 351–369.CrossRef Sunho, L., Chansu, Y., & Chita, R. (2010). A realistic mobility model for wireless networks of scale-free node connectivity. International Journal of Mobile Communications, 8(3), 351–369.CrossRef
49.
go back to reference Ducatelle, F., Di Caro, G. A., Förster, A., et al. (2014). Cooperative navigation in robotic swarms. Swarm Intelligence, 8(1), 1–33.CrossRef Ducatelle, F., Di Caro, G. A., Förster, A., et al. (2014). Cooperative navigation in robotic swarms. Swarm Intelligence, 8(1), 1–33.CrossRef
50.
go back to reference Yoon, J., Liu, M., & Noble, B. (2003). Sound mobility models. In Proceedings of the ACM/IEEE international conference on mobile computing and networking (MOBICOM ‘03), San Diego, CA, USA (pp. 205–216). Yoon, J., Liu, M., & Noble, B. (2003). Sound mobility models. In Proceedings of the ACM/IEEE international conference on mobile computing and networking (MOBICOM ‘03), San Diego, CA, USA (pp. 205–216).
Metadata
Title
A realistic mobility model with irregular obstacle constraints for mobile ad hoc networks
Authors
Wei Wang
Jiajun Wang
Mingming Wang
Beizhan Wang
Wenjing Zhang
Publication date
14-09-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1569-z

Other articles of this Issue 2/2019

Wireless Networks 2/2019 Go to the issue