Skip to main content
Top
Published in: Telecommunication Systems 3/2023

27-08-2023

A reinforcement learning-based load balancing algorithm for fog computing

Authors: Niloofar Tahmasebi-Pouya, Mehdi Agha Sarram, Seyedakbar Mostafavi

Published in: Telecommunication Systems | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fog computing is a developing paradigm for bringing cloud computing capabilities closer to end-users. Fog computing plays an important role in improving resource utilization and decreasing delay for internet of things (IoT) applications. At the same time, it faces many challenges, including challenges related to energy consumption, scheduling and resource overload. Load balancing helps to reduce delay, increase user satisfaction, and also increase system efficiency by efficiently and fairly allocation of tasks among computing resources. Fair load distribution among fog nodes is a difficult challenge due to the increasing number of IoT devices. In this research, we suggested a new approach for fair load distribution in fog environment. The Q-learning algorithm-based load balancing method is executed as the proposed approach in the fog layer. The objective of this method is to simultaneously improve the load balancing and delay. In this technique, the fog node uses reinforcement learning to choose whether to handle a task it receives via IoT devices directly, or whether to send it to a nearby fog node or the cloud. The simulation findings demonstrate that our approach results a suitable technique for fair load distribution among fog nodes, which improves the delay, run time, network utilization, and standard deviation of load on nodes than other compared techniques. In this way, in the case where the number of fog nodes is considered to be 4, the delay in the proposed method is reduced by around 8.44% in comparison to the load balancing and optimization strategy (LBOS) method, 26.65% in comparison to the secure authentication and load balancing (SALB) method, 29.15% in comparison to the proportional method, 7.75% in comparison to the fog cluster-based load-balancing (FCBLB) method, and 36.22% in comparison to the random method. In the case where the number of fog nodes is considered to be 10, the delay in the proposed method is reduced by around 13.80% in comparison to the LBOS method, 29.84% in comparison to the SALB method, 32.23% in comparison to the proportional method, 13.34% in comparison to the FCBLB method, and 39.1% in comparison to the Random method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Quality of Experience.
 
2
Quality of Service.
 
3
Electro Encephalo Gram.
 
4
Load Balancing and Optimization Strategy.
 
5
Secure Authentication and Load Balancing.
 
6
Fog Cluster-Based Load-Balancing.
 
Literature
1.
go back to reference Martinez, I., Hafid, A. S., & Jarray, A. (2021). Design, resource management, and evaluation of fog computing systems: a survey. IEEE Internet of Things Journal, 8(4), 2494–2516.CrossRef Martinez, I., Hafid, A. S., & Jarray, A. (2021). Design, resource management, and evaluation of fog computing systems: a survey. IEEE Internet of Things Journal, 8(4), 2494–2516.CrossRef
2.
go back to reference Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330.CrossRef Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330.CrossRef
3.
go back to reference Kashani, M. H., & Mahdipour, E. (2023). Load balancing algorithms in fog computing. IEEE Transactions on Services Computing, 16, 1505–1521.CrossRef Kashani, M. H., & Mahdipour, E. (2023). Load balancing algorithms in fog computing. IEEE Transactions on Services Computing, 16, 1505–1521.CrossRef
4.
go back to reference Kashyap, V., & Kumar, A. (2022). Load balancing techniques for fog computing environment: Comparison, taxonomy, open issues, and challenges. Concurrency and Computation: Practice and Experience, 34(23), e7183.CrossRef Kashyap, V., & Kumar, A. (2022). Load balancing techniques for fog computing environment: Comparison, taxonomy, open issues, and challenges. Concurrency and Computation: Practice and Experience, 34(23), e7183.CrossRef
5.
go back to reference Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022). Resource allocation and task scheduling in fog computing and internet of everything environments: a taxonomy, review, and future directions. ACM Computing Surveys, 54, 1–38. https://doi.org/10.1145/3513002CrossRef Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022). Resource allocation and task scheduling in fog computing and internet of everything environments: a taxonomy, review, and future directions. ACM Computing Surveys, 54, 1–38. https://​doi.​org/​10.​1145/​3513002CrossRef
6.
go back to reference Batra, S., Anand, D., & Singh, A. (2022). A brief overview of load balancing techniques in fog computing environment. In 2022 6th international conference on trends in electronics and informatics (ICOEI). IEEE (pp. 886–891). Batra, S., Anand, D., & Singh, A. (2022). A brief overview of load balancing techniques in fog computing environment. In 2022 6th international conference on trends in electronics and informatics (ICOEI). IEEE (pp. 886–891).
7.
go back to reference Hamid, L., Jadoon, A., & Asghar, H. (2022). Comparative analysis of task level heuristic scheduling algorithms in cloud computing. The Journal of Supercomputing, 78, 12931–12949.CrossRef Hamid, L., Jadoon, A., & Asghar, H. (2022). Comparative analysis of task level heuristic scheduling algorithms in cloud computing. The Journal of Supercomputing, 78, 12931–12949.CrossRef
8.
go back to reference Chowdhury, S., & Katangur, A. (2022). Threshold based load balancing algorithm in cloud computing. In 2022 IEEE international conference on joint cloud computing (JCC). IEEE (pp. 23–28). Chowdhury, S., & Katangur, A. (2022). Threshold based load balancing algorithm in cloud computing. In 2022 IEEE international conference on joint cloud computing (JCC). IEEE (pp. 23–28).
9.
go back to reference Katangur, A., Akkaladevi, S., & Vivekanandhan, S. (2022). Priority weighted round robin algorithm for load balancing in the cloud. In 2022 IEEE 7th international conference on smart cloud (SmartCloud). IEEE (pp. 230–235). Katangur, A., Akkaladevi, S., & Vivekanandhan, S. (2022). Priority weighted round robin algorithm for load balancing in the cloud. In 2022 IEEE 7th international conference on smart cloud (SmartCloud). IEEE (pp. 230–235).
10.
go back to reference Al-Amodi, S., Patra, S. S., Bhattacharya, S., Mohanty, J. R., Kumar, V., & Barik, R. K. (2022). Meta-heuristic algorithm for energy-efficient task scheduling in fog computing. Recent trends in electronics and communication (pp. 915–925). Springer.CrossRef Al-Amodi, S., Patra, S. S., Bhattacharya, S., Mohanty, J. R., Kumar, V., & Barik, R. K. (2022). Meta-heuristic algorithm for energy-efficient task scheduling in fog computing. Recent trends in electronics and communication (pp. 915–925). Springer.CrossRef
11.
go back to reference AlShathri, S. I., Chelloug, S. A., & Hassan, D. S. (2022). Parallel meta-heuristics for solving dynamic offloading in fog computing. Mathematics, 10(8), 1258.CrossRef AlShathri, S. I., Chelloug, S. A., & Hassan, D. S. (2022). Parallel meta-heuristics for solving dynamic offloading in fog computing. Mathematics, 10(8), 1258.CrossRef
13.
go back to reference Ijeoma, C. C., Inyiama, P., Samuel, A., Okechukwu, O. M., & Chinedu, A. D. (2022). Review of hybrid load balancing algorithms in cloud computing environment. arXiv:2202.13181. Ijeoma, C. C., Inyiama, P., Samuel, A., Okechukwu, O. M., & Chinedu, A. D. (2022). Review of hybrid load balancing algorithms in cloud computing environment. arXiv:​2202.​13181.
14.
go back to reference Khan, M. S. A., & Santhosh, R. (2022). Task scheduling in cloud computing using hybrid optimization algorithm. Soft Computing, 26(23), 13069–13079.CrossRef Khan, M. S. A., & Santhosh, R. (2022). Task scheduling in cloud computing using hybrid optimization algorithm. Soft Computing, 26(23), 13069–13079.CrossRef
15.
go back to reference Talaat, F. M., Ali, H. A., Saraya, M. S., & Saleh, A. I. (2022). Effective scheduling algorithm for load balancing in fog environment using CNN and MPSO. Knowledge and Information Systems, 64(3), 773–797.CrossRef Talaat, F. M., Ali, H. A., Saraya, M. S., & Saleh, A. I. (2022). Effective scheduling algorithm for load balancing in fog environment using CNN and MPSO. Knowledge and Information Systems, 64(3), 773–797.CrossRef
16.
go back to reference Gures, E., Shayea, I., Ergen, M., Azmi, M. H., & El-Saleh, A. A. (2022). Machine learning-based load balancing algorithms in future heterogeneous networks: a survey. IEEE Access, 10, 37689–37717.CrossRef Gures, E., Shayea, I., Ergen, M., Azmi, M. H., & El-Saleh, A. A. (2022). Machine learning-based load balancing algorithms in future heterogeneous networks: a survey. IEEE Access, 10, 37689–37717.CrossRef
17.
go back to reference Sheikhpour, R., Sarram, M. A., Gharaghani, S., & Chahooki, M. A. Z. (2017). A survey on semi-supervised feature selection methods. Pattern Recognition, 64, 141–158.CrossRef Sheikhpour, R., Sarram, M. A., Gharaghani, S., & Chahooki, M. A. Z. (2017). A survey on semi-supervised feature selection methods. Pattern Recognition, 64, 141–158.CrossRef
18.
go back to reference Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., & Kim, D.-S. (2022). Reinforcement learning based resource management for fog computing environment: Literature review, challenges, and open issues. Journal of Communications and Networks, 24(1), 83–98.CrossRef Tran-Dang, H., Bhardwaj, S., Rahim, T., Musaddiq, A., & Kim, D.-S. (2022). Reinforcement learning based resource management for fog computing environment: Literature review, challenges, and open issues. Journal of Communications and Networks, 24(1), 83–98.CrossRef
19.
go back to reference Prudencio, R. F., Maximo, M. R., & Colombini, E. L. (2022). A survey on offline reinforcement learning: taxonomy, review, and open problems. arXiv:2203.01387. Prudencio, R. F., Maximo, M. R., & Colombini, E. L. (2022). A survey on offline reinforcement learning: taxonomy, review, and open problems. arXiv:​2203.​01387.
20.
go back to reference Xu, Y., Xu, W., Wang, Z., Lin, J., & Cui, S. (2019). Load balancing for ultradense networks: A deep reinforcement learning-based approach. IEEE Internet of Things Journal, 6(6), 9399–9412.CrossRef Xu, Y., Xu, W., Wang, Z., Lin, J., & Cui, S. (2019). Load balancing for ultradense networks: A deep reinforcement learning-based approach. IEEE Internet of Things Journal, 6(6), 9399–9412.CrossRef
21.
go back to reference Li, S. E. (2023). Deep reinforcement learning. Reinforcement learning for sequential decision and optimal control (pp. 365–402). Springer.CrossRef Li, S. E. (2023). Deep reinforcement learning. Reinforcement learning for sequential decision and optimal control (pp. 365–402). Springer.CrossRef
23.
go back to reference Singh, J., Singh, P., Amhoud, E. M., & Hedabou, M. (2022). Energy-efficient and secure load balancing technique for SDN-enabled fog computing. Sustainability, 14(19), 12951.CrossRef Singh, J., Singh, P., Amhoud, E. M., & Hedabou, M. (2022). Energy-efficient and secure load balancing technique for SDN-enabled fog computing. Sustainability, 14(19), 12951.CrossRef
24.
go back to reference Phan, L. A., Nguyen, D. T., Lee, M., Park, D. H., & Kim, T. (2021). Dynamic fog-to-fog offloading in SDN-based fog computing systems. Future Generation Computer Systems, 117, 486–497.CrossRef Phan, L. A., Nguyen, D. T., Lee, M., Park, D. H., & Kim, T. (2021). Dynamic fog-to-fog offloading in SDN-based fog computing systems. Future Generation Computer Systems, 117, 486–497.CrossRef
25.
go back to reference Belkout, N. E., Zeraoulia, K., Shahzad, M. N., Liu, L., & Yuan, B. (2022). A load balancing and routing strategy in fog computing using deep reinforcement learning. In 2022 international conference on electrical, computer and energy technologies (ICECET). IEEE (pp. 1–8). Belkout, N. E., Zeraoulia, K., Shahzad, M. N., Liu, L., & Yuan, B. (2022). A load balancing and routing strategy in fog computing using deep reinforcement learning. In 2022 international conference on electrical, computer and energy technologies (ICECET). IEEE (pp. 1–8).
26.
go back to reference Singh, P., Kaur, R., Rashid, J., Juneja, S., Dhiman, G., Kim, J., & Ouaissa, M. (2022). A fog-cluster based load-balancing technique. Sustainability, 14(13), 7961.CrossRef Singh, P., Kaur, R., Rashid, J., Juneja, S., Dhiman, G., Kim, J., & Ouaissa, M. (2022). A fog-cluster based load-balancing technique. Sustainability, 14(13), 7961.CrossRef
27.
go back to reference Nair, B., & Bhanu, S. (2022). A reinforcement learning algorithm for rescheduling preempted tasks in fog nodes. Journal of Scheduling, 25, 547–565.CrossRef Nair, B., & Bhanu, S. (2022). A reinforcement learning algorithm for rescheduling preempted tasks in fog nodes. Journal of Scheduling, 25, 547–565.CrossRef
28.
go back to reference Baek, J., & Kaddoum, G. (2021). Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet of Things Journal, 8(2), 1041–1056.CrossRef Baek, J., & Kaddoum, G. (2021). Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet of Things Journal, 8(2), 1041–1056.CrossRef
29.
go back to reference Divya, V., & Sri, R. L. (2019). ReTra: reinforcement based traffic load balancer in fog based network. In 2019 10th international conference on computing, communication and networking technologies (ICCCNT), 2019. Divya, V., & Sri, R. L. (2019). ReTra: reinforcement based traffic load balancer in fog based network. In 2019 10th international conference on computing, communication and networking technologies (ICCCNT), 2019.
30.
go back to reference Talaat, F. M., Saraya, M. S., Saleh, A. I., Ali, H. A., & Ali, S. H. (2020). A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4951–4966.CrossRef Talaat, F. M., Saraya, M. S., Saleh, A. I., Ali, H. A., & Ali, S. H. (2020). A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4951–4966.CrossRef
31.
go back to reference Kadhim, A. J., & Naser, J. I. (2021). Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV-SDN. China Communications, 18(2), 271–289.CrossRef Kadhim, A. J., & Naser, J. I. (2021). Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV-SDN. China Communications, 18(2), 271–289.CrossRef
32.
go back to reference Sharma, S., & Saini, H. (2019). A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable Computing: Informatics and Systems, 24, 100355. Sharma, S., & Saini, H. (2019). A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustainable Computing: Informatics and Systems, 24, 100355.
33.
go back to reference Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., & Liu, A. X. (2018). Dynamic resource allocation for load balancing in fog environment. Wireless Communications and Mobile Computing, 2018, 6421607.CrossRef Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., & Liu, A. X. (2018). Dynamic resource allocation for load balancing in fog environment. Wireless Communications and Mobile Computing, 2018, 6421607.CrossRef
34.
go back to reference Beraldi, R., Canali, C., Lancellotti, R., & Mattia, G. P. (2020). A random walk based load balancing algorithm for fog computing. In 2020 Fifth international conference on fog and mobile edge computing (FMEC), 2020. Beraldi, R., Canali, C., Lancellotti, R., & Mattia, G. P. (2020). A random walk based load balancing algorithm for fog computing. In 2020 Fifth international conference on fog and mobile edge computing (FMEC), 2020.
35.
go back to reference Manju, A. B., & Sumathy, S. (2019). Efficient load balancing algorithm for task preprocessing in fog computing environment. Smart intelligent computing and applications (pp. 291–298). Springer.CrossRef Manju, A. B., & Sumathy, S. (2019). Efficient load balancing algorithm for task preprocessing in fog computing environment. Smart intelligent computing and applications (pp. 291–298). Springer.CrossRef
36.
go back to reference Talaat, F. M., Ali, S. H., Saleh, A. I., & Ali, H. A. (2019). Effective load balancing strategy (ELBS) for real-time fog computing environment using fuzzy and probabilistic neural networks. Journal of Network and Systems Management, 27(4), 883–929.CrossRef Talaat, F. M., Ali, S. H., Saleh, A. I., & Ali, H. A. (2019). Effective load balancing strategy (ELBS) for real-time fog computing environment using fuzzy and probabilistic neural networks. Journal of Network and Systems Management, 27(4), 883–929.CrossRef
37.
go back to reference Pradhan, A., Bisoy, S. K., Kautish, S., Jasser, M. B., & Mohamed, A. W. (2022). Intelligent decision-making of load balancing using deep reinforcement learning and parallel PSO in cloud environment. IEEE Access, 10, 76939–76952.CrossRef Pradhan, A., Bisoy, S. K., Kautish, S., Jasser, M. B., & Mohamed, A. W. (2022). Intelligent decision-making of load balancing using deep reinforcement learning and parallel PSO in cloud environment. IEEE Access, 10, 76939–76952.CrossRef
38.
go back to reference Puthal, D., Ranjan, R., Nanda, A., Nanda, P., Jayaraman, P. P., & Zomaya, A. Y. (2019). Secure authentication and load balancing of distributed edge data centers. Journal of Parallel and Distributed Computing, 124, 60–69.CrossRef Puthal, D., Ranjan, R., Nanda, A., Nanda, P., Jayaraman, P. P., & Zomaya, A. Y. (2019). Secure authentication and load balancing of distributed edge data centers. Journal of Parallel and Distributed Computing, 124, 60–69.CrossRef
39.
go back to reference Tellioglu, I., & Mantar, H. A. (2009). A proportional load balancing for wireless sensor networks. In 2009 third international conference on sensor technologies and applications (pp. 514–519). Tellioglu, I., & Mantar, H. A. (2009). A proportional load balancing for wireless sensor networks. In 2009 third international conference on sensor technologies and applications (pp. 514–519).
40.
go back to reference Houidi, O., Zeghlache, D., Perrier, V., Quang, P. T. A., Huin, N., Leguay, J., & Medagliani, P. (2022). Constrained deep reinforcement learning for smart load balancing. In 2022 IEEE 19th annual consumer communications & networking conference (CCNC). IEEE (pp. 207–215). Houidi, O., Zeghlache, D., Perrier, V., Quang, P. T. A., Huin, N., Leguay, J., & Medagliani, P. (2022). Constrained deep reinforcement learning for smart load balancing. In 2022 IEEE 19th annual consumer communications & networking conference (CCNC). IEEE (pp. 207–215).
41.
go back to reference Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. (2020). Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102, 847–861.CrossRef Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. (2020). Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102, 847–861.CrossRef
42.
go back to reference Zhu, X. k., Zhang, Q., Liu, L., Cheng, T., Yao, S., Zhou, W., & He, J. (2019). DLB: deep learning based load balancing. arXiv:1910.08494. Zhu, X. k., Zhang, Q., Liu, L., Cheng, T., Yao, S., Zhou, W., & He, J. (2019). DLB: deep learning based load balancing. arXiv:​1910.​08494.
43.
go back to reference Alvi, A. N., Javed, M. A., Hasanat, M. H. A., Khan, M. B., Saudagar, A. K. J., Alkhathami, M., & Farooq, U. (2022). Intelligent task offloading in fog computing based vehicular networks. Applied Sciences, 12(9), 4521.CrossRef Alvi, A. N., Javed, M. A., Hasanat, M. H. A., Khan, M. B., Saudagar, A. K. J., Alkhathami, M., & Farooq, U. (2022). Intelligent task offloading in fog computing based vehicular networks. Applied Sciences, 12(9), 4521.CrossRef
44.
go back to reference Tu, Y., Chen, H., Yan, L., & Zhou, X. (2022). Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge computing in IoT. Future Internet, 14(2), 30.CrossRef Tu, Y., Chen, H., Yan, L., & Zhou, X. (2022). Task offloading based on LSTM prediction and deep reinforcement learning for efficient edge computing in IoT. Future Internet, 14(2), 30.CrossRef
45.
go back to reference Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software-Practice and Experience, 47(9), 1275–1296.CrossRef Gupta, H., Dastjerdi, A. V., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software-Practice and Experience, 47(9), 1275–1296.CrossRef
46.
go back to reference Mahmud, R., & Buyya, R. (2019). Modeling and simulation of fog and edge computing environments using iFogSim toolkit. Fog and edge computing (pp. 433–465). Wiley.CrossRef Mahmud, R., & Buyya, R. (2019). Modeling and simulation of fog and edge computing environments using iFogSim toolkit. Fog and edge computing (pp. 433–465). Wiley.CrossRef
Metadata
Title
A reinforcement learning-based load balancing algorithm for fog computing
Authors
Niloofar Tahmasebi-Pouya
Mehdi Agha Sarram
Seyedakbar Mostafavi
Publication date
27-08-2023
Publisher
Springer US
Published in
Telecommunication Systems / Issue 3/2023
Print ISSN: 1018-4864
Electronic ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01049-7

Other articles of this Issue 3/2023

Telecommunication Systems 3/2023 Go to the issue