Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

A reverse Mulholland-type inequality in the whole plane

Authors: Jianquan Liao, Bicheng Yang

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite–Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Assuming that \(p > 1,\frac{1}{p} + \frac{1}{q} = 1,a_{m},b_{n} \ge 0,0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty\), and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty\), the Hardy–Hilbert inequality is provided as follows (see [1]):
$$ \sum_{n = 1}^{\infty} \sum _{m = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(1)
where \(\frac{\pi}{\sin (\pi /p)}\) is the best possible constant factor. By Theorem 343 in [1] (replacing \(\frac{a_{m}}{m}\) and \(\frac{b_{n}}{n}\) by \(a _{m}\) and \(b _{n}\), respectively), it yields the following Mulholland inequality with the same best value:
$$ \sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{a_{m}b_{n}}{\ln mn} < \frac{\pi}{\sin (\pi /p)} \Biggl( \sum_{m = 2}^{\infty} \frac{a_{m}^{p}}{m} \Biggr)^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{b_{n}^{q}}{n} \Biggr)^{\frac{1}{q}}. $$
(2)
Inequalities (1) and (2) play an important role in analysis and its applications (see [1, 2]).
In 2007, Yang [3] published a Hilbert-type integral inequality in the whole plane. Various extensions of (1)–(2) and Yang’s work have been presented since then [412]. Recently, Yang and Chen [13] presented the following extension of (1) in the whole plane:
$$\begin{aligned} &\sum_{ \vert n \vert = 1}^{\infty} \sum _{ \vert m \vert = 1}^{\infty} \frac{a_{m}b_{n}}{( \vert m - \xi \vert + \vert n - \eta \vert )^{\lambda}} \\ &\quad < 2B(\lambda_{1},\lambda_{2}) \Biggl[ \sum _{ \vert m \vert = 1}^{\infty} \vert m - \xi \vert ^{p(1 - \lambda_{1}) - 1}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 1}^{\infty} \vert n - \eta \vert ^{q(1 - \lambda_{2}) - 1} b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(3)
where the constant factor \(2B(\lambda_{1},\lambda_{2})\ (0 < \lambda_{1},\lambda_{2} \le 1,\lambda_{1} + \lambda_{2} = \lambda,\xi,\eta \in [0,\frac{1}{2}])\) is the best possible. In addition, Xin et al. [14] also carried out a similar result, and Zhong et al. [15] gave the reverse Mulholland’s inequality in the whole plane.
In this paper, we present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor, which is similar to the results of [13], via introducing multiparameters, applying weight coefficients, and using the Hermite–Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.

2 An example and two lemmas

We further assume that \(\lambda_{1},\lambda_{2} > 0,\lambda_{1} + \lambda_{2} = \lambda \le 1,\xi,\eta \in [0,\frac{1}{2}], \alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{2}]\), and
$$ k_{\gamma} (\lambda_{1}): = \frac{2\pi^{2}\csc^{2}\gamma}{ \lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\quad (\gamma = \alpha,\beta ). $$
(4)
Remark 1
Since \(\alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{ 2}],\xi,\eta \in [0,\frac{1}{2}]\), it follows that
$$\biggl(\frac{3}{2} \pm \eta \biggr) (1 \mp \cos \beta ) \ge 1 \quad\mbox{and}\quad \biggl(\frac{3}{2} \pm \xi \biggr) (1 \mp \cos \alpha ) \ge 1. $$
Example 1
We set \(g(u): = \frac{\ln u}{u - 1}\ (u > 0),g(1): = \lim_{u \to 1}g(u) = 1\). Then we have \(g(u) > 0,g'(u) < 0,g''(u) > 0\ (u > 0)\). By Tailor’s formula we find
$$g(u) = \frac{\ln [1 + (u - 1)]}{u - 1} = \sum_{k = 0}^{\infty} ( - 1)^{k}\frac{(u - 1)^{k}}{k + 1} = \sum_{k = 0}^{\infty} \frac{( - 1)^{k}k!}{k + 1} \frac{(u - 1)^{k}}{k!}\quad ( - 1 < u - 1 \le 1), $$
and then \(g^{(k)}(1) = \frac{( - 1)^{k}k!}{k + 1}\ (k = 0,1,2, \ldots )\). Hence, \(g^{(0)}(1) = g(1) = 1,g'(1) = - \frac{1}{2},g''(1) = \frac{2}{3}\). It is evident that \(g(u) > 0\). We obtain \(g'(u) = \frac{h(u)}{u(u - 1)^{2}},h(u): = u - 1 - u\ln u\). Since
$$h'(u) = - \ln u > 0\quad (0 < u < 1);\qquad h'(u) = - \ln u < 0\quad (u > 1), $$
it follows that \(h_{\max} = h(1) = 0\) and \(h(u) < 0\ (u \ne 1)\). Then we have \(g'(u) < 0\ (u \ne 1)\). Since \(g'(1) = - \frac{1}{2} < 0\), it follows that \(g'(u) < 0\ (u > 0)\). We find
$$g''(u) = \frac{J(u)}{u^{2}(u - 1)^{3}},\quad J(u): = - (u - 1)^{2} - 2u(u - 1) + 2u^{2}\ln u, $$
\(J'(u) = - 4(u - 1) + 4u\ln u\), and
$$ J''(u) = 4\ln u < 0\quad (0 < u < 1);\qquad J''(u) = 4\ln u > 0\quad (u > 1). $$
It follows that \(J'_{\min} = J'(1) = 0\), \(J'(u) > 0\ (u \ne 1)\), and \(J(u)\) is strictly increasing. Since \(J(1) = 0\), we have
$$J(u) < 0\quad (0 < u < 1);\qquad J(u) > 0\quad (u > 1), $$
and \(g''(u) > 0\ (u \ne 1)\). Since \(g''(1) = \frac{2}{3} > 0\), we find \(g''(u) > 0\ (u > 0)\).
For \(0 < \lambda \le 1,0 < \lambda_{2} < 1\), setting \(G(u): = g(u^{\lambda} )u^{\lambda_{2} - 1}\ (u > 0)\), we have \(G(u) > 0\),
$$\begin{aligned} &G'(u) = \lambda g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 2} + (\lambda_{2} - 1)g\bigl(u^{\lambda} \bigr)u^{\lambda_{2} - 2} < 0,\quad\mbox{and} \\ &G''(u) = \lambda^{2}g'' \bigl(u^{\lambda} \bigr)u^{2\lambda + \lambda_{2} - 3} + \lambda (\lambda + \lambda_{2} - 2)g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 3} \\ &\phantom{G''(u) =}{}+ \lambda (\lambda_{2} - 1)g'\bigl(u^{\lambda} \bigr)u^{\lambda + \lambda_{2} - 3} + (\lambda_{2} - 1) (\lambda_{2} - 2)g\bigl(u^{\lambda} \bigr)u^{\lambda_{2} - 3} > 0. \end{aligned}$$
We set \(F(x,y): = \frac{\ln (x/y)}{x^{\lambda} - y^{\lambda}}\ (\frac{y}{x})^{\lambda_{2} - 1}(x,y > 0)\). Since \(F(x,y) = \frac{1}{x^{\lambda}} G(\frac{y}{x})\), we have
$$F(x,y) > 0,\qquad \frac{\partial}{\partial y}F(x,y) < 0,\qquad \frac{\partial^{2}}{\partial y^{2}}F(x,y) > 0. $$
Hence, for \(x,y > 1\), we have
$$\frac{1}{y}F(\ln x,\ln y) > 0,\qquad \frac{\partial}{\partial y}\biggl( \frac{1}{y}F(\ln x,\ln y)\biggr) < 0,\qquad \frac{\partial^{2}}{\partial y^{2}}\biggl( \frac{1}{y}F(\ln x,\ln y)\biggr) > 0. $$
Lemma 1
If \(f(u) > 0,f'(u) < 0,f''(u) > 0\ (u > \frac{3}{2})\) and \(\int_{\frac{3}{2}}^{\infty} f(u) \,du < \infty\), then we have the following Hermite–Hadamard inequality (see [16]):
$$\int_{k}^{k + 1} f(u) \,du < f(k) < \int_{k - \frac{1}{2}}^{k + \frac{1}{2}} f(u) \,du \quad\bigl(k \in \mathbf{N} \backslash \{ 1\} \bigr), $$
and then
$$ \int_{2}^{\infty} f(u) \,du < \sum _{k = 2}^{\infty} f(k) < \int_{\frac{3}{2}}^{\infty} f(u) \,du. $$
(5)
For \(\vert x \vert , \vert y \vert \ge \frac{3}{2}\), define
$$A_{\xi,\alpha} (x): = \vert x - \xi \vert + (x - \xi )\cos \alpha, $$
\(A_{\eta,\beta} (y) = \vert y - \eta \vert + (y - \eta )\cos \beta\), and
$$ k(x,y): = \frac{\ln (\ln A_{\xi,\alpha} (x)/\ln A_{\eta,\beta} (y))}{\ln^{\lambda} A_{\xi,\alpha} (x) - \ln^{\lambda} A_{\eta,\beta} (y)}. $$
(6)
We define two weight coefficients as follows:
$$\begin{aligned} &\omega (\lambda_{2},m): = \sum_{ \vert n \vert = 2}^{\infty} \frac{k(m,n)}{A_{\eta,\beta} (n)} \cdot \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}, \quad \vert m \vert \in \mathbf{N} \backslash \{ 1\}, \end{aligned}$$
(7)
$$\begin{aligned} &\varpi (\lambda_{1},n): = \sum_{ \vert m \vert = 2}^{\infty} \frac{k(m,n)}{A_{\xi,\alpha} (m)} \cdot \frac{\ln^{\lambda_{2}}A_{\eta,\beta} (n)}{\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)},\quad \vert n \vert \in \mathbf{N} \backslash \{ 1\}, \end{aligned}$$
(8)
where \(\sum_{ \vert j \vert = 2}^{\infty} \cdots = \sum_{j = - 2}^{ - \infty} \cdots+ \sum_{j = 2}^{\infty} \cdots\) (\(j = m,n\)).
Lemma 2
We have the inequalities
$$ k_{\beta} (\lambda_{1}) \bigl(1 - \theta ( \lambda_{2},m)\bigr) < \omega (\lambda_{2},m) < k_{\beta} (\lambda_{1}), \quad \vert m \vert \in \mathbf{N} \backslash \{ 1\}, $$
(9)
where
$$\begin{aligned} \theta (\lambda_{2},m): = {}&\biggl[\frac{\lambda}{\pi} \sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1). \end{aligned}$$
(10)
Proof
For \(\vert m \vert \in \mathbf{N}\backslash \{ 1\}\), let
$$\begin{aligned} &k^{(1)}(m,y): = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y - \eta )(\cos \beta - 1)]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y - \eta )(\cos \beta - 1)]},\quad y < - \frac{3}{2}, \\ &k^{(2)}(m,y): = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y - \eta )(\cos \beta + 1)]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y - \eta )(\cos \beta + 1)]},\quad y > \frac{3}{2}. \end{aligned}$$
Then the equality
$$k^{(1)}(m, - y) = \frac{\ln \ln A_{\xi} (m) - \ln \ln [(y + \eta )(1 - \cos \beta )]}{\ln^{\lambda} A_{\xi} (m) - \ln^{\lambda} [(y + \eta )(1 - \cos \beta )]},\quad y > \frac{3}{2}, $$
yields
$$\begin{aligned} \omega (\lambda_{2},m) ={}& \sum_{n = - 2}^{ - \infty} \frac{k^{(1)}(m,n)\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{(n - \eta )(\cos \beta - 1)\ln^{1 - \lambda_{2}}[(n - \eta )(\cos \beta - 1)]} \\ &{}+ \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{(n - \eta )(1 + \cos \beta )\ln^{1 - \lambda_{2}}[(n - \eta )(1 + \cos \beta )]} \\ ={}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \sum_{n = 2}^{\infty} \frac{k^{(1)}(m, - n)}{(n + \eta )\ln^{1 - \lambda_{2}}[(n + \eta )(1 - \cos \beta )]} \\ &{} + \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \sum_{n = 2}^{\infty} \frac{k^{(2)}(m,n)}{(n - \eta )\ln^{1 - \lambda_{2}}[(n - \eta )(1 + \cos \beta )]}. \end{aligned}$$
(11)
Since \(0 < \lambda \le 1,0 < \lambda_{2} < 1\), by Example 1 we find that, for \(y > \frac{3}{2}\),
$$\begin{aligned} &\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} > 0, \\ &\frac{d}{dy}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} < 0, \\ &\frac{d^{2}}{dy^{2}}\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]} > 0\quad(i = 1,2), \end{aligned}$$
from which it follows that
$$\frac{k^{(i)}(m,( - 1)^{i}y)}{(y - ( - 1)^{i}\eta )\ln^{1 - \lambda_{2}}[(y - ( - 1)^{i}\eta )(1 + ( - 1)^{i}\cos \beta )]}\quad (i = 1,2) $$
are strictly decreasing and convex in (\(\frac{3}{2},\infty \)). Then (5) and (11) yield that
$$\begin{aligned} \omega (\lambda_{2},m) < {}&\frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta )\ln^{1 - \lambda_{2}}[(y + \eta )(1 - \cos \beta )]} \,dy \\ &{}+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \int_{\frac{3}{2}}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta )\ln^{1 - \lambda_{2}}[(y - \eta )(1 + \cos \beta )]} \,dy. \end{aligned}$$
Setting \(u = \frac{\ln [(y + \eta )(1 - \cos \beta )]}{\ln A_{\xi,\alpha} (m)}\ (u = \frac{\ln [(y - \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)})\) in the first (second) integral, from Remark 1 we obtain
$$\begin{aligned} \omega (\lambda_{2},m) < {}& \biggl(\frac{1}{1 - \cos \beta} + \frac{1}{1 + \cos \beta} \biggr) \int_{0}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& \frac{2\csc^{2}\beta}{\lambda^{2}} \int_{0}^{\infty} \frac{\ln v}{v - 1} v^{(\lambda_{2}/\lambda ) - 1} \,dv = \frac{2\pi^{2}\csc^{2}\beta}{ \lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )} = k_{\beta} (\lambda_{1}), \end{aligned}$$
by simplifications. Similarly, (5) and (11) also yield that
$$\begin{aligned} \omega (\lambda_{2},m) >{}& \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 - \cos \beta} \int_{2}^{\infty} \frac{k^{(1)}(m, - y)}{(y + \eta )\ln^{1 - \lambda_{2}}[(y + \eta )(1 - \cos \beta )]} \,dy \\ &{}+ \frac{\ln^{\lambda_{1}}A_{\xi,\alpha} (m)}{1 + \cos \beta} \int_{2}^{\infty} \frac{k^{(2)}(m,y)}{(y - \eta )\ln^{1 - \lambda_{2}}[(y - \eta )(1 + \cos \beta )]} \,dy \\ \ge{}& \biggl(\frac{1}{1 - \cos \beta} + \frac{1}{1 + \cos \beta} \biggr) \int_{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}}^{\infty} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) - 2\csc^{2}\beta \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2} - 1} \,du \\ ={}& k_{\beta} (\lambda_{1}) \bigl(1 - \theta ( \lambda_{2},m)\bigr) > 0, \end{aligned}$$
where \(\theta (\lambda_{2},m)( < 1)\) is defined in (10). Since
$$\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to 0\quad \bigl(u \to 0^{ +} \bigr);\qquad \frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \to \frac{1}{\lambda}\quad (u \to 1), $$
there exists a positive constant C such that \(\frac{\ln u}{u^{\lambda} - 1}u^{\lambda_{2}/2} \le C\ (0 < u \le 1)\). Then for \(A_{\xi,\alpha} (m) \ge (2 + \eta )(1 + \cos \beta )\), we have
$$\begin{aligned} 0& < \theta (\lambda_{2},m) \le C\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} u^{\frac{\lambda_{2}}{2} - 1} \,du \\ &= \frac{2C}{\lambda_{2}}\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2}\biggl\{ \frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}\biggr\} ^{\frac{\lambda}{2}}. \end{aligned}$$
(12)
Hence, (9) and (10) are valid. □
Similarly, we have the following:
Lemma 3
For \(0 < \lambda \le 1,0 < \lambda_{1} < 1\), we have the inequalities
$$ k_{\alpha} (\lambda_{1}) \bigl(1 - \tilde{\theta} ( \lambda_{1},n)\bigr) < \varpi (\lambda_{1},n) < k_{\alpha} (\lambda_{1}),\quad \vert n \vert \in \mathbf{N} \backslash \{ 1\}, $$
(13)
where
$$\begin{aligned} \tilde{\theta} (\lambda_{1},n): = {}&\biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \xi )(1 + \cos \alpha )]}{\ln A_{\eta,\beta} (n)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{1} - 1} \,du \\ = {}&O\biggl(\frac{1}{\ln^{\lambda_{1}/2}A_{\eta,\beta} (n)}\biggr) \in (0,1). \end{aligned}$$
(14)
Lemma 4
If \((\varsigma,\gamma ) = (\xi,\alpha )\) (or \((\eta,\beta )\)), \(\rho > 0\), then we have
$$ H_{\rho} (\varsigma,\gamma ): = \sum_{ \vert k \vert = 2}^{\infty} \frac{\ln^{ - 1 - \rho} A_{\varsigma,\gamma} (k)}{A_{\varsigma,\gamma} (k)} = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o(1) \bigr) \quad \bigl(\rho \to 0^{ +} \bigr). $$
(15)
Proof
By (5) we obtain
$$\begin{aligned} H_{\rho} (\varsigma,\gamma ) ={}& \sum_{k = - 2}^{ - \infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma - 1)]}{(k - \varsigma )(\cos \gamma - 1)} + \sum_{k = 2}^{\infty} \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)} \\ = {}&\sum_{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma )(1 - \cos \gamma )]}{(k - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)}\biggr\} \\ < {}& \int_{\frac{3}{2}}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma )(1 - \cos \gamma )]}{(y - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma )(\cos \gamma + 1)]}{(y - \varsigma )(\cos \gamma + 1)}\biggr\} \,dy \\ ={}& \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(\frac{3}{2} + \varsigma )(1 - \cos \gamma )]}{1 - \cos \gamma} + \frac{\ln^{ - \rho} [(\frac{3}{2} - \varsigma )(1 + \cos \gamma )]}{1 + \cos \gamma} \biggr\} \\ ={}& \frac{1}{\rho} \biggl(\frac{1}{1 - \cos \gamma} + \frac{1}{1 + \cos \gamma} + o_{1}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o_{1}(1)\bigr) \quad\bigl(\rho \to 0^{ +} \bigr) \end{aligned}$$
and
$$\begin{aligned} H_{\rho} (\varsigma,\gamma ) ={}& \sum_{k = 2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(k + \varsigma )(1 - \cos \gamma )]}{(k - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(k - \varsigma )(\cos \gamma + 1)]}{(k - \varsigma )(\cos \gamma + 1)}\biggr\} \\ >{}& \int_{2}^{\infty} \biggl\{ \frac{\ln^{ - 1 - \rho} [(y + \varsigma )(1 - \cos \gamma )]}{(y - \varsigma )(1 - \cos \gamma )} + \frac{\ln^{ - 1 - \rho} [(y - \varsigma )(\cos \gamma + 1)]}{(y - \varsigma )(\cos \gamma + 1)}\biggr\} \,dy \\ ={}& \frac{1}{\rho} \biggl\{ \frac{\ln^{ - \rho} [(2 + \varsigma )(1 - \cos \gamma )]}{1 - \cos \gamma} + \frac{\ln^{ - \rho} [(2 - \varsigma )(1 + \cos \gamma )]}{1 + \cos \gamma} \biggr\} \\ ={}& \frac{1}{\rho} \biggl(\frac{1}{1 - \cos \gamma} + \frac{1}{1 + \cos \gamma} + o_{2}(1)\biggr) = \frac{1}{\rho} \bigl(2\csc^{2}\gamma + o_{2}(1)\bigr) \quad\bigl(\rho \to 0^{ +} \bigr). \end{aligned}$$
Therefore, (15) is valid. □

3 Main results and a few particular cases

Theorem 1
Suppose that \(0 < p < 1,\frac{1}{p} + \frac{1}{q} = 1\),
$$ k(\lambda_{1}): = k_{\beta}^{1/p}( \lambda_{1})k_{\alpha}^{1/q}(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}}. $$
(16)
If \(a_{m},b_{n} \ge 0\ ( \vert m \vert , \vert n \vert \in \mathbf{N}\backslash \{ 1\} )\), satisfy
$$0 < \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}} a_{m}^{p} < \infty,\qquad 0 < \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} < \infty, $$
then for
$$\begin{aligned} \theta (\lambda_{2},m) &= \biggl[\frac{\lambda}{\pi} \sin \biggl( \frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln [(2 + \eta )(1 + \cos \beta )]}{\ln A_{\xi,\alpha} (m)}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ &= O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1), \end{aligned}$$
we obtain the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} I: ={}& \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)} a_{m}b_{n} \\ &\quad> \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(17)
$$\begin{aligned} J_{1}: ={}& \Biggl\{ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ >{}& \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(18)
$$\begin{aligned} J_{2}: = {}&\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{q - 1}A_{\xi,\alpha} (m)} \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ >{}& \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(19)
Particularly, (i) for \(\alpha = \beta = \frac{\pi}{2},\xi,\eta \in [0,\frac{1}{2}]\), setting
$$\begin{aligned} \theta_{1}(\lambda_{2},m)&: = \biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln \vert m - \xi \vert }} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ &= O\biggl(\frac{1}{\ln^{\lambda_{2}/2} \vert m - \xi \vert }\biggr) \in (0,1), \end{aligned}$$
we have the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert } a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{1}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n - \eta \vert }{ \vert n - \eta \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(20)
$$\begin{aligned} &\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1} \vert n - \eta \vert }{ \vert n - \eta \vert } \Biggl( \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert }a_{m} \Biggr)^{p} \Biggr]^{\frac{1}{p}} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{1}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m - \xi \vert }{ \vert m - \xi \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(21)
$$\begin{aligned} &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1} \vert m - \xi \vert }{(1 - \theta_{1}(\lambda_{2},m))^{q - 1} \vert m - \xi \vert } \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln ( \vert m - \xi \vert / \vert n - \eta \vert )a_{m}}{\ln^{\lambda} \vert m - \xi \vert - \ln^{\lambda} \vert n - \eta \vert }b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n - \eta \vert }{ \vert n - \eta \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(22)
(ii) For \(\xi = \eta = 0,\alpha,\beta \in [\arccos \frac{1}{3},\frac{\pi}{ 2}]\), setting
$$\begin{aligned} \theta_{2}(\lambda_{2},m): ={}& \biggl[\frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln 2(1 + \cos \beta )}{\ln ( \vert m \vert + m\cos \alpha )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du \\ ={}& O\biggl(\frac{1}{\ln^{\lambda_{2}/2}A_{\xi,\alpha} (m)}\biggr) \in (0,1), \end{aligned}$$
we have the following equivalent reverse Mulholland-type inequalities:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )} a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{2}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos \alpha )}{( \vert m \vert + m\cos \alpha )^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &\qquad{}\times\Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}( \vert n \vert + n\cos \beta )}{( \vert n \vert + n\cos \beta )^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$
(23)
$$\begin{aligned} &\Biggl\{ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{p\lambda_{2} - 1}( \vert n \vert + n\cos \beta )}{ \vert n \vert + n\cos \beta} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )}a_{m} \Biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad> \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta_{2}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1}( \vert m \vert + m\cos \alpha )}{( \vert m \vert + m\cos \alpha )^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}, \end{aligned}$$
(24)
$$\begin{aligned} &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{q\lambda_{1} - 1}( \vert m \vert + m\cos \alpha )}{(1 - \theta_{2}(\lambda_{2},m))^{q - 1}( \vert m \vert + m\cos \alpha )} \\ &\qquad{}\times \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln [\ln ( \vert m \vert + m\cos \alpha )/\ln ( \vert n \vert + n\cos \beta )]}{\ln^{\lambda} ( \vert m \vert + m\cos \alpha ) - \ln^{\lambda} ( \vert n \vert + n\cos \beta )}b_{n} \Biggr)^{q} \Biggr]^{\frac{1}{q}} \\ &\quad > \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}( \vert n \vert + n\cos \beta )}{( \vert n \vert + n\cos \beta )^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(25)
Proof
Applying the reverse Hölder inequality with weight (see [17]) and (8), we find
$$\begin{aligned} &\Biggl( \sum_{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p} \\ &\quad= \Biggl\{ \sum_{ \vert m \vert = 2}^{\infty} k(m,n) \biggl[ \frac{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)}{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}a_{m} \biggr] \biggl[ \frac{\ln^{\frac{1 - \lambda_{2}}{p}}A_{\eta,\beta} (n)}{(A_{\xi,\alpha} (m))^{\frac{1}{q}}\ln^{\frac{1 - \lambda_{1}}{q}}A_{\xi,\alpha} (m)} \biggr] \Biggr\} ^{p} \\ &\quad\ge \sum_{ \vert m \vert = 2}^{\infty} k(m,n) \frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \\ &\qquad{}\times\Biggl[ \sum _{ \vert m \vert = 2}^{\infty} k(m,n)\frac{\ln^{\frac{(1 - \lambda_{2})q}{p}}A_{\eta,\beta} (n)}{A_{\xi,\alpha} (m)\ln^{1 - \lambda_{1}}A_{\xi,\alpha} (m)} \Biggr]^{p - 1} \\ &\quad= \frac{(\varpi (\lambda_{1},n))^{p - 1}A_{\eta,\beta} (n)}{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}\sum_{ \vert m \vert = 2}^{\infty} k(m,n) \frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p}. \end{aligned}$$
Then since \(0 < p < 1\), by (13) this yields
$$\begin{aligned} J &> k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert = 2}^{\infty} \sum _{ \vert n \vert = 2}^{\infty} k(m,n)\frac{(A_{\xi,\alpha} (m))^{\frac{p}{q}}\ln^{\frac{(1 - \lambda_{1})p}{q}}A_{\xi,\alpha} (m)}{A_{\eta,\beta} (n)\ln^{1 - \lambda_{2}}A_{\eta,\beta} (n)}a_{m}^{p} \Biggr]^{\frac{1}{p}} \\ &= k_{\alpha}^{1/q}(\lambda_{1}) \Biggl[ \sum _{ \vert m \vert = 2}^{\infty} \omega (\lambda_{2},m) \frac{n^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
(26)
Combining (9) and (16), we obtain (18).
Using the reverse Hölders inequality again, we obtain
$$\begin{aligned} I &= \sum_{ \vert n \vert = 2}^{\infty} \Biggl[ \frac{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}\sum_{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr] \biggl[ \frac{\ln^{\frac{1}{p} - \lambda_{2}}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{\frac{ - 1}{p}}}b_{n} \biggr] \\ &\ge J_{1} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(27)
Then by (18) we obtain (17).
On the other-hand, assuming that (17) is valid, letting
$$b_{n}: = \frac{\ln^{p\lambda_{2} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggl( \sum _{ \vert m \vert = 2}^{\infty} k(m,n)a_{m} \Biggr)^{p - 1}, \quad \vert n \vert \in \mathbf{N}\backslash \{ 1\}, $$
we find
$$J_{1} = \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{p}}. $$
By (26) it follows that \(J_{1} > 0\). If \(J_{1} = \infty\), then (19) is trivially valid; if \(J_{1} < \infty\), then by (17) we have
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q}\\ &\quad = J_{1}^{p} = I \\ &\quad> k(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \\ &J_{1} = \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} b_{n}^{q} \Biggr]^{\frac{1}{p}} > k( \lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}. \end{aligned}$$
Thus (18) is valid, which is equivalent to (17).
We further prove that (19) is equivalent to (17). Using the reverse Hölders inequality, we have
$$\begin{aligned} I={}& \sum_{ \vert m \vert = 2}^{\infty} \biggl[ \bigl(1 - \theta (\lambda_{2},m)\bigr)^{\frac{1}{p}}\frac{\ln^{\frac{1}{q} - \lambda_{1}}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{\frac{ - 1}{q}}}a_{m} \biggr] \\ &{}\times \Biggl[ \frac{n^{\frac{ - 1}{q} + \lambda_{1}}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{\frac{1}{p}}(A_{\xi,\alpha} (m))^{\frac{1}{q}}}\sum_{ \vert n \vert = 2}^{\infty} k(m,n)b_{n} \Biggr] \\ \ge{}& \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}}J_{2}, \end{aligned}$$
(28)
and then (19) is valid by (17).
On the other-hand, assuming that (17) is valid, we set
$$a_{m}: = \frac{\ln^{q\lambda_{1} - 1}A_{\xi,\alpha} (m)}{(1 - \theta (\lambda_{2},m))^{q - 1}A_{\xi,\alpha} (m)} \Biggl( \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln (\ln A_{\xi,\alpha} (m)/\ln A_{\eta,\beta} (n))}{\ln^{\lambda} A_{\xi,\alpha} (m) - \ln^{\lambda} A_{\eta,\beta} (n)}b_{n} \Biggr)^{q - 1},\quad m \in \mathbf{N}\backslash \{ 1\}, $$
and find
$$J_{2} = \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{q}}. $$
If \(J_{2} = 0\), then (19) is impossible, so that \(J_{2} > 0\). If \(J_{2} = \infty\), then (19) is trivially valid; if \(J_{2} < \infty\), then by (17) we have
$$\begin{aligned} &\sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta ( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \\ &\quad= J_{2}^{q} = I \\ &\quad> k(\lambda_{1}) \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}, \\ &\Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta ( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{q}} \\ &\quad= J_{2} \\ &\quad > k(\lambda_{1}) \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
Thus (19) is valid, which is equivalent to (17).
Hence, inequalities (17), (18), and (19) are equivalent. □
Theorem 2
Under the assumptions in Theorem 1,
$$k(\lambda_{1}) = \frac{2\pi^{2}\csc^{2/p}\beta \csc^{2/q}\alpha}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} $$
is the best possible constant factor in (17), (18), and (19).
Proof
For \(0 < \varepsilon < \min \{ p\lambda_{1},p(1 - \lambda_{2})\}\), we set \(\tilde{\lambda}_{1} = \lambda_{1} - \frac{\varepsilon}{p}( \in (0,1)),\tilde{\lambda}_{2} = \lambda_{2} + \frac{\varepsilon}{p} ( \in (0,1))\), and
$$\begin{aligned} &\tilde{a}_{m}: = \frac{\ln^{\lambda_{1} - \frac{\varepsilon}{p} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} = \frac{\ln^{\tilde{\lambda}_{1} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)}\quad \bigl( \vert m \vert \in \mathbf{N}\backslash \{ 1\} \bigr), \\ &\tilde{b}_{n}: = \frac{\ln^{\lambda_{2} - \frac{\varepsilon}{q} - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} = \frac{\ln^{\tilde{\lambda}_{2} - \varepsilon - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)}\quad \bigl( \vert n \vert \in \mathbf{N}\backslash \{ 1\} \bigr). \end{aligned}$$
By (15) and (13) we find
$$\begin{aligned} &\tilde{I}_{2}: = \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \theta (\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}A_{\xi,\alpha} (m)}{(A_{\xi,\alpha} (m))^{1 - p}} \tilde{a}_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1}A_{\eta,\beta} (n)}{(A_{\eta,\beta} (n))^{1 - q}} \tilde{b}_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &\phantom{\tilde{I}_{2}:}= \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} - \sum_{ \vert m \vert = 2}^{\infty} \frac{O(\ln^{ - 1 - (\frac{\lambda_{2}}{2} + \varepsilon )}A_{\xi,\alpha} (m))}{A_{\xi,\alpha} (m)} \Biggr]^{\frac{1}{p}} \Biggl[ \sum _{ \vert n \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \Biggr]^{\frac{1}{q}} \\ &\phantom{\tilde{I}_{2}:}= \frac{1}{\varepsilon} \bigl(2\csc^{2}\alpha + o(1) - \varepsilon O(1) \bigr)^{\frac{1}{p}}\bigl(2\csc^{2}\beta + \tilde{o}(1) \bigr)^{\frac{1}{q}}\quad\bigl(\varepsilon \to 0^{ +} \bigr), \\ &\tilde{I} = \sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} = \sum_{ \vert m \vert = 2}^{\infty} \sum_{ \vert n \vert = 2}^{\infty} k(m,n) \frac{\ln^{\tilde{\lambda}_{1} - 1}A_{\xi,\alpha} (m)}{A_{\xi,\alpha} (m)} \frac{\ln^{\tilde{\lambda}_{2} - \varepsilon - 1}A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \\ &\phantom{\tilde{I} =}= \sum_{ \vert n \vert = 2}^{\infty} \varpi (\tilde{ \lambda}_{1},n)\frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} < k_{\alpha} (\tilde{ \lambda}_{1})\sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{ - 1 - \varepsilon} A_{\eta,\beta} (n)}{A_{\eta,\beta} (n)} \\ &\phantom{\tilde{I} =}= \frac{1}{\varepsilon} k_{\alpha} (\tilde{\lambda}_{1}) \bigl(2\csc^{2}\beta + o(1)\bigr). \end{aligned}$$
If there exists a positive number \(k \ge k(\lambda_{1})\) such that (17) is still valid when replacing \(k(\lambda_{1})\) by k, then, in particular, we have
$$\varepsilon \tilde{I} = \varepsilon \sum_{ \vert m \vert = 2}^{\infty} \sum_{ \vert n \vert = 2}^{\infty} k(m,n) \tilde{a}_{m} \tilde{b}_{n} > \varepsilon k\tilde{I}_{2}. $$
We obtain from the previous results that
$$\begin{aligned} &k_{\beta} \biggl(\lambda_{1} + \frac{\varepsilon}{ q}\biggr) \bigl(2\csc^{2}\alpha + o(1)\bigr) \\ &\quad > k\bigl(2\csc^{2}\alpha + o(1) - \varepsilon O(1) \bigr)^{\frac{1}{p}}\bigl(2\csc^{2}\beta + \tilde{o}(1) \bigr)^{\frac{1}{q}}, \end{aligned}$$
and then
$$\frac{4\pi^{2}}{\lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\csc^{2}\beta \csc^{2}\alpha \ge 2k \csc^{\frac{2}{p}}\alpha \csc^{\frac{2}{q}}\beta \quad \bigl(\varepsilon \to 0^{ +} \bigr), $$
namely, \(k(\lambda_{1}) = \frac{2\pi^{2}}{\lambda^{2}\sin^{2}(\frac{\pi \lambda_{1}}{\lambda} )}\csc^{\frac{2}{p}}\beta \csc^{\frac{2}{q}}\alpha \ge k\). Hence, \(k = k(\lambda_{1})\) is the best possible constant factor of (17).
The constant factor \(k(\lambda_{1})\) in (18) and (19) is still the best possible. Otherwise, we would reach a contradiction by (27) and (28) that the constant factor in (17) is not the best possible. □
Remark 2
(i) For \(\xi = \eta = 0\) in (20), setting
$$\tilde{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln 2}{\ln \vert m \vert }} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2} \vert m \vert }\biggr) \in (0,1), $$
we have the following new inequality:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln \vert m \vert /\ln \vert n \vert )}{\ln^{\lambda} \vert m \vert - \ln^{\lambda} \vert n \vert } a_{m}b_{n} \\ &\quad > \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \\ &\qquad{}\times \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \tilde{\theta}_{1}(\lambda_{2},m)\bigr) \frac{\ln^{p(1 - \lambda_{1}) - 1} \vert m \vert }{ \vert m \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl[ \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{q(1 - \lambda_{2}) - 1} \vert n \vert }{ \vert n \vert ^{1 - q}}b_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(29)
It follows that (20) is an extension of (29). In particular, for \(\lambda = 1,\lambda_{1} = \lambda_{2} = \frac{1}{2}\), setting
$$\tilde{\theta}_{1}(m): = \frac{1}{\pi^{2}} \int_{0}^{\frac{\ln 2}{\ln \vert m \vert }} \frac{\ln u}{u - 1} u^{\frac{ - 1}{2}} \,du = O\biggl(\frac{1}{\ln^{1/4} \vert m \vert }\biggr) \in (0,1), $$
we have the following simple reverse Mulholland-type inequality in the whole plane:
$$\begin{aligned} &\sum_{ \vert n \vert = 2}^{\infty} \sum _{ \vert m \vert = 2}^{\infty} \frac{\ln (\ln \vert m \vert /\ln \vert n \vert )}{\ln ( \vert m \vert / \vert n \vert )} a_{m}b_{n} \\ &\quad> 2\pi^{2} \Biggl[ \sum_{ \vert m \vert = 2}^{\infty} \bigl(1 - \tilde{\theta}_{1}(m)\bigr)\frac{\ln^{\frac{p}{2} - 1} \vert m \vert }{ \vert m \vert ^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{ \vert n \vert = 2}^{\infty} \frac{\ln^{\frac{q}{2} - 1} \vert n \vert }{ \vert n \vert ^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
(30)
(ii) If \(a_{ - m} = a_{m},b_{ - n} = b_{n}\ (m,n \in \mathbf{N}\backslash \{ 1\} )\), for \(m \in \mathbf{N}\backslash \{ 1\}\), setting
$$\begin{aligned} &\stackrel{\frown}{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln (m - \xi )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2}(m - \xi )}\biggr) \in (0,1), \\ &\stackrel{\smile}{\theta}_{1}(\lambda_{2},m): = \biggl[ \frac{\lambda}{\pi} \sin \biggl(\frac{\pi \lambda_{1}}{\lambda} \biggr)\biggr]^{2} \int_{0}^{\frac{\ln (2 + \eta )}{\ln (m + \xi )}} \frac{\ln u}{u^{\lambda} - 1} u^{\lambda_{2} - 1} \,du = O\biggl(\frac{1}{\ln^{\lambda_{2}/2}(m + \xi )}\biggr) \in (0,1), \end{aligned}$$
(20) reduces to
$$\begin{aligned} &\sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \biggl\{ \frac{\ln [\ln (m - \xi )/\ln (n - \eta )]}{\ln^{\lambda} (m - \xi ) - \ln^{\lambda} (n - \eta )} + \frac{\ln [\ln (m - \xi )/\ln (n + \eta )]}{\ln^{\lambda} (m - \xi ) - \ln^{\lambda} (n + \eta )} \\ &\qquad{} + \frac{\ln [\ln (m + \xi )/\ln (n - \eta )]}{\ln^{\lambda} (m + \xi ) - \ln^{\lambda} (n - \eta )} + \frac{\ln [\ln (m + \xi )/\ln (n + \eta )]}{\ln^{\lambda} (m + \xi ) - \ln^{\lambda} (n + \eta )} \biggr\} a_{m}b_{n} \\ &\quad> \frac{2\pi^{2}}{[\lambda \sin (\frac{\pi \lambda_{1}}{\lambda} )]^{2}} \Biggl\{ \sum_{m = 2}^{\infty} \biggl[ \bigl(1 - \stackrel{\frown}{\theta}_{1}( \lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}(m - \xi )}{(m - \xi )^{1 - p}} \\ &\qquad{}+ \bigl(1 - \stackrel{\smile}{ \theta}_{1}(\lambda_{2},m)\bigr)\frac{\ln^{p(1 - \lambda_{1}) - 1}(m + \xi )}{(m + \xi )^{1 - p}} \biggr]a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times \Biggl\{ \sum_{n = 2}^{\infty} \biggl[ \frac{\ln^{q(1 - \lambda_{2}) - 1}(n - \eta )}{(n - \eta )^{1 - q}} + \frac{\ln^{q(1 - \lambda_{2}) - 1}(n + \eta )}{(n + \eta )^{1 - q}} \biggr]b_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(31)
In particular, for \(\xi = \eta = 0,\lambda = 1,\lambda_{1} = \lambda_{2} = \frac{1}{2}\), setting
$$\stackrel{\frown}{\theta}_{1}(m): = \frac{1}{\pi^{2}} \int_{0}^{\frac{\ln 2}{\ln m}} \frac{\ln u}{u - 1} u^{ - \frac{1}{2}} \,du = O\biggl(\frac{1}{\ln^{1/4}m}\biggr) \in (0,1), $$
we have the following simple reverse Mulholland-type inequality:
$$\begin{aligned} &\sum_{n = 2}^{\infty} \sum _{m = 2}^{\infty} \frac{\ln (\ln m/\ln n)}{\ln (m/n)} a_{m}b_{n} \\ &\quad > \pi^{2} \Biggl[ \sum_{m = 2}^{\infty} \bigl(1 - \stackrel{\frown}{\theta}_{1}(m)\bigr) \frac{\ln^{\frac{p}{2} - 1}m}{m^{1 - p}}a_{m}^{p} \Biggr]^{\frac{1}{p}} \Biggl( \sum_{n = 2}^{\infty} \frac{\ln^{\frac{q}{2} - 1}n}{n^{1 - q}}b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
(32)

4 Conclusions

In this paper, we obtain a new reverse Mulholland’s inequality in the whole plane with a best possible constant factor in Theorems 12. Equivalent forms and a few particular cases are considered. The method of real analysis is very important and is the key to prove the reverse equivalent inequalities with the best possible constant factor. The lemmas and theorems can provide an extensive account of this type inequalities.

Acknowledgements

This work is supported by the National Natural Science Foundation (Nos. 61370186, 61640222, and 11401113) and Science and Technology Planning Project Item of Guangzhou City (No. 201707010229).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH
2.
go back to reference Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Boston (1991) CrossRefMATH Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic Publishers, Boston (1991) CrossRefMATH
3.
4.
go back to reference Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH Hong, Y.: All-sided generalization about Hardy–Hilbert integral inequalities. Acta Math. Sin. 44(4), 619–626 (2001) MathSciNetMATH
5.
go back to reference Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH Krnić, M., Pečarić, J.E.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8(1), 29–51 (2005) MathSciNetMATH
6.
go back to reference Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH Perić, I., Vuković, P.: Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 5(2), 33–43 (2011) MathSciNetCrossRefMATH
7.
go back to reference He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 902–990 (2015) MathSciNetMATH He, B.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431, 902–990 (2015) MathSciNetMATH
8.
go back to reference Adiyasuren, V., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH Adiyasuren, V., Tserendorj, B., Krnić, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10(2), 320–337 (2016) MathSciNetCrossRefMATH
9.
go back to reference Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH Li, Y., He, B.: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1–13 (2007) CrossRefMATH
10.
11.
go back to reference Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH Huang, Q., Yang, B.: A more accurate half-discrete Hilbert inequality with a nonhomogeneous kernel. J. Funct. Spaces Appl. 2013, Article ID 628250 (2013) MathSciNetMATH
12.
go back to reference He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH He, B., Wang, Q.: A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 431(2), 889–902 (2015) MathSciNetCrossRefMATH
13.
go back to reference Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH Yang, B., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016) MathSciNetMATH
14.
15.
16.
go back to reference Yang, B.: A more accurate multidimensional Hardy–Hilbert’s inequality. J. Appl. Anal. Comput. 8(2), 559–573 (2018) Yang, B.: A more accurate multidimensional Hardy–Hilbert’s inequality. J. Appl. Anal. Comput. 8(2), 559–573 (2018)
17.
go back to reference Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinese) Kuang, J.: Applied Inequalities. Shangdong Science Technic Press, Jinan (2010) (in Chinese)
Metadata
Title
A reverse Mulholland-type inequality in the whole plane
Authors
Jianquan Liao
Bicheng Yang
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1669-z

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner