Skip to main content
Top
Published in: Polymer Bulletin 1/2021

06-01-2020 | Review Paper

A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry

Authors: Anila Iqbal, Aamer Saeed, Anwar Ul-Hamid

Published in: Polymer Bulletin | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon nanotubes (CNTs) have enormous application in various fields such as sensors, aerospace, super capacitors and photovoltaic devices, etc., and they are extensively exploited for number of other energy and environmental applications nowadays. With the rapid development and evolution in the field of aerospace industry, the existing developed technologies do not have adequate potential to overpower the requirements and demands of the new era. Nanocomposites based on CNT have procured significant attention in recent years for their applications in aircrafts, military crafts, missile and spacecraft due to advanced properties such as thermal stability, chemical stability, huge surface area, etc. In this review, the fundamentals in the field on CNT nanocomposites with reference to nanoparticles and conducting polymers such as DGEBA, polyaniline, polythiophene and polypyrrole are discussed. The main objective of the review is to study the advancement in aerospace applications of polymer/CNT nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bagchi A, Nomura S (2006) On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos Sci Technol 66(11–12):1703–1712 Bagchi A, Nomura S (2006) On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos Sci Technol 66(11–12):1703–1712
2.
go back to reference Chang T-E et al (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47(22):7740–7746 Chang T-E et al (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47(22):7740–7746
3.
go back to reference Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734 Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734
4.
go back to reference Khelifa I et al (2019) New poly (o-phenylenediamine)/modified-clay nanocomposites: a study on spectral, thermal, morphological and electrochemical characteristics. J Mol Struct 1178:327–332 Khelifa I et al (2019) New poly (o-phenylenediamine)/modified-clay nanocomposites: a study on spectral, thermal, morphological and electrochemical characteristics. J Mol Struct 1178:327–332
5.
go back to reference Rafique I et al (2016) Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: a review. Polym Plast Technol Eng 55(3):312–333 Rafique I et al (2016) Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: a review. Polym Plast Technol Eng 55(3):312–333
6.
go back to reference Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55(11):1167–1191 Kausar A, Rafique I, Muhammad B (2016) Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 55(11):1167–1191
7.
go back to reference Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater 23(3):646–657 Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater 23(3):646–657
8.
go back to reference Saber Samandari S (2014) Elastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays. Int J Nano Dimens 5:273–278 Saber Samandari S (2014) Elastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays. Int J Nano Dimens 5:273–278
9.
go back to reference Usuki A et al (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. J Mater Res 8(5):1174–1178 Usuki A et al (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by∊-caprolactam. J Mater Res 8(5):1174–1178
10.
go back to reference Haque A et al (2002) s2-glass/vinyl ester polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. In: 17th annual technical conference. American Society for Composites Haque A et al (2002) s2-glass/vinyl ester polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. In: 17th annual technical conference. American Society for Composites
11.
go back to reference Andrei G, Dima D, Andrei L (2006) Lightweight magnetic composites for aircraft applications. J Optoelectron Adv Mater 8(2):726 Andrei G, Dima D, Andrei L (2006) Lightweight magnetic composites for aircraft applications. J Optoelectron Adv Mater 8(2):726
12.
go back to reference Cheung KC, Gershenfeld N (2013) Reversibly assembled cellular composite materials. Science 341:1240889 Cheung KC, Gershenfeld N (2013) Reversibly assembled cellular composite materials. Science 341:1240889
13.
go back to reference Bekyarova E et al (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974PubMed Bekyarova E et al (2007) Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974PubMed
14.
go back to reference Koelle D (2003) Specific transportation costs to GEO—past, present and future. Acta Astronaut 53(4–10):797–803 Koelle D (2003) Specific transportation costs to GEO—past, present and future. Acta Astronaut 53(4–10):797–803
15.
go back to reference Thostenson E et al (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037 Thostenson E et al (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91(9):6034–6037
16.
go back to reference Wu M et al (2000) Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. J Phys D Appl Phys 33(19):2398 Wu M et al (2000) Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites. J Phys D Appl Phys 33(19):2398
17.
go back to reference Périchaud M-G et al (2000) Reliability evaluation of adhesive bonded SMT components in industrial applications. Microelectron Reliab 40(7):1227–1234 Périchaud M-G et al (2000) Reliability evaluation of adhesive bonded SMT components in industrial applications. Microelectron Reliab 40(7):1227–1234
18.
go back to reference White KL, Sue HJ (2011) Electrical conductivity and fracture behavior of epoxy/polyamide-12/multiwalled carbon nanotube composites. Polym Eng Sci 51(11):2245–2253 White KL, Sue HJ (2011) Electrical conductivity and fracture behavior of epoxy/polyamide-12/multiwalled carbon nanotube composites. Polym Eng Sci 51(11):2245–2253
19.
go back to reference Park SJ, Kim HC (2001) Thermal stability and toughening of epoxy resin with polysulfone resin. J Polym Sci Part B Polym Phys 39(1):121–128 Park SJ, Kim HC (2001) Thermal stability and toughening of epoxy resin with polysulfone resin. J Polym Sci Part B Polym Phys 39(1):121–128
20.
go back to reference Jin F-L, Ma C-J, Park S-J (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528(29–30):8517–8522 Jin F-L, Ma C-J, Park S-J (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528(29–30):8517–8522
21.
go back to reference Bascom W et al (1975) The fracture of epoxy-and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19(9):2545–2562 Bascom W et al (1975) The fracture of epoxy-and elastomer-modified epoxy polymers in bulk and as adhesives. J Appl Polym Sci 19(9):2545–2562
22.
go back to reference Na T et al (2013) Composite membranes based on fully sulfonated poly (aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sources 230:290–297 Na T et al (2013) Composite membranes based on fully sulfonated poly (aryl ether ketone)/epoxy resin/different curing agents for direct methanol fuel cells. J Power Sources 230:290–297
23.
go back to reference Jin F-L, Park S-J (2013) Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett 14(1):1–13 Jin F-L, Park S-J (2013) Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett 14(1):1–13
24.
go back to reference Anilkumar KR et al (2009) Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Phys B 404(12–13):1664–1667 Anilkumar KR et al (2009) Effect of molybdenum trioxide (MoO3) on the electrical conductivity of polyaniline. Phys B 404(12–13):1664–1667
25.
go back to reference Kryszewski M (1991) Heterogeneous conducting polymeric systems: dispersions, blends, crystalline conducting networks—an introductory presentation. Synth Met 45(3):289–296 Kryszewski M (1991) Heterogeneous conducting polymeric systems: dispersions, blends, crystalline conducting networks—an introductory presentation. Synth Met 45(3):289–296
26.
go back to reference Daikh S et al (2018) Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J Phys Chem Solids 121:78–84 Daikh S et al (2018) Chemical polymerization, characterization and electrochemical studies of PANI/ZnO doped with hydrochloric acid and/or zinc chloride: differences between the synthesized nanocomposites. J Phys Chem Solids 121:78–84
27.
go back to reference Le TH et al (2013) Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol 4(2):025014 Le TH et al (2013) Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol 4(2):025014
28.
go back to reference Molapo KM et al (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875 Molapo KM et al (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875
29.
go back to reference Hassan M et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8 Hassan M et al (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8
30.
go back to reference Yamani K et al (2019) Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim 135(4):2089–2100 Yamani K et al (2019) Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim 135(4):2089–2100
31.
go back to reference Proń A et al (1985) Mössbauer spectroscopy studies of selected conducting polypyrroles. J Chem Phys 83(11):5923–5927 Proń A et al (1985) Mössbauer spectroscopy studies of selected conducting polypyrroles. J Chem Phys 83(11):5923–5927
32.
go back to reference Armes SP (1987) Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution. Synth Met 20(3):365–371 Armes SP (1987) Optimum reaction conditions for the polymerization of pyrrole by iron (III) chloride in aqueous solution. Synth Met 20(3):365–371
33.
go back to reference Marks RS et al (2002) An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole–biotin). Anal Bioanal Chem 374(6):1056–1063PubMed Marks RS et al (2002) An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly (pyrrole–biotin). Anal Bioanal Chem 374(6):1056–1063PubMed
34.
go back to reference Neoh K et al (1997) Oxidation–reduction interactions between electroactive polymer thin films and Au(III) ions in acid solutions. Chem Mater 9(12):2906–2912 Neoh K et al (1997) Oxidation–reduction interactions between electroactive polymer thin films and Au(III) ions in acid solutions. Chem Mater 9(12):2906–2912
35.
go back to reference Vernitskaya TYV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457 Vernitskaya TYV, Efimov ON (1997) Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66(5):443–457
36.
go back to reference Kang E et al (1988) ESCA analysis of polymer–acceptor interactions in chemically synthesized polypyrrole–halogen complexes. Polym J 20(5):399 Kang E et al (1988) ESCA analysis of polymer–acceptor interactions in chemically synthesized polypyrrole–halogen complexes. Polym J 20(5):399
37.
go back to reference Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221 Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221
38.
go back to reference Yamaura M, Hagiwara T, Iwata K (1988) Enhancement of electrical conductivity of polypyrrole film by stretching: counter ion effect. Synth Met 26(3):209–224 Yamaura M, Hagiwara T, Iwata K (1988) Enhancement of electrical conductivity of polypyrrole film by stretching: counter ion effect. Synth Met 26(3):209–224
39.
go back to reference Waugaman M et al (2003) Synthesis, characterization and biocompatibility studies of oligosiloxane modified polythiophenes. Eur Polym J 39(7):1405–1412 Waugaman M et al (2003) Synthesis, characterization and biocompatibility studies of oligosiloxane modified polythiophenes. Eur Polym J 39(7):1405–1412
40.
go back to reference Georger JH et al (1987) Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J Am Chem Soc 109(20):6169–6175 Georger JH et al (1987) Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J Am Chem Soc 109(20):6169–6175
41.
go back to reference Shen Y, Wan M (1997) Soluble conductive polypyrrole synthesized by in situ doping with β-naphthalene sulphonic acid. J Polym Sci Part A Polym Chem 35(17):3689–3695 Shen Y, Wan M (1997) Soluble conductive polypyrrole synthesized by in situ doping with β-naphthalene sulphonic acid. J Polym Sci Part A Polym Chem 35(17):3689–3695
42.
go back to reference Li S et al (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1(1):5214 Li S et al (2010) Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1(1):5214
43.
go back to reference Jabeen S et al (2015) A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng 54(13):1379–1409 Jabeen S et al (2015) A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: structure, preparation and properties. Polym Plast Technol Eng 54(13):1379–1409
44.
go back to reference Sadhasivam T et al (2017) Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review. Renew Sustain Energy Rev 72:523–534 Sadhasivam T et al (2017) Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review. Renew Sustain Energy Rev 72:523–534
45.
go back to reference Bystrzejewski M et al (2010) Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Mater 25(1):1–8 Bystrzejewski M et al (2010) Catalyst-free synthesis of onion-like carbon nanoparticles. New Carbon Mater 25(1):1–8
46.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56
47.
go back to reference Köhler AR et al (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937 Köhler AR et al (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937
48.
go back to reference Hafner JH, Cheung CL, Lieber CM (1999) Growth of nanotubes for probe microscopy tips. Nature 398(6730):761 Hafner JH, Cheung CL, Lieber CM (1999) Growth of nanotubes for probe microscopy tips. Nature 398(6730):761
49.
go back to reference Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205 Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205
50.
go back to reference Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14(3):131–144 Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14(3):131–144
51.
go back to reference Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, Amsterdam Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, Amsterdam
52.
go back to reference Bachtold A et al (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320PubMed Bachtold A et al (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320PubMed
53.
go back to reference Wunder S et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(19):8814–8820 Wunder S et al (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114(19):8814–8820
54.
go back to reference Maier S et al (2003) Plasmonics—a route to nanoscale optical devices (advanced materials, 2001, 13, 1501). Adv Mater 15(7–8):562 Maier S et al (2003) Plasmonics—a route to nanoscale optical devices (advanced materials, 2001, 13, 1501). Adv Mater 15(7–8):562
55.
go back to reference Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators B Chem 54(1–2):3–15 Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sens Actuators B Chem 54(1–2):3–15
56.
go back to reference Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992PubMed Sun S et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992PubMed
57.
go back to reference Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128(20):6550–6551PubMed Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128(20):6550–6551PubMed
58.
go back to reference Wu W et al (2010) Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566PubMed Wu W et al (2010) Core–shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566PubMed
59.
go back to reference Dreaden EC et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMed Dreaden EC et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMed
60.
go back to reference Schmid G (2005) Nanoparticles. Wiley, Hoboken Schmid G (2005) Nanoparticles. Wiley, Hoboken
61.
go back to reference Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications, Washington Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications, Washington
62.
go back to reference Jacobson DM, Sangha SP (1998) Future trends in materials for lightweight microwave packaging. Microelectron Int 15(3):17–21 Jacobson DM, Sangha SP (1998) Future trends in materials for lightweight microwave packaging. Microelectron Int 15(3):17–21
63.
go back to reference Śleziona J, Wieczorek J, Dyzia M (2006) Mechanical properties of silver matrix composites reinforced with ceramic particles. J Achiev Mater Manuf Eng 17(1–2):165–168 Śleziona J, Wieczorek J, Dyzia M (2006) Mechanical properties of silver matrix composites reinforced with ceramic particles. J Achiev Mater Manuf Eng 17(1–2):165–168
64.
go back to reference Broza G (2010) Synthesis, properties, functionalisation and applications of carbon nanotubes: a state of the art review. Chem Chem Technol 4(1):35–45 Broza G (2010) Synthesis, properties, functionalisation and applications of carbon nanotubes: a state of the art review. Chem Chem Technol 4(1):35–45
65.
go back to reference Cha SI et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381 Cha SI et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381
66.
go back to reference Kim KT et al (2008) The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 4(11):1936–1940PubMed Kim KT et al (2008) The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small 4(11):1936–1940PubMed
67.
go back to reference Dang TMD et al (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009 Dang TMD et al (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2(1):015009
68.
go back to reference Wen J et al (2011) Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids Surf A 373(1–3):29–35 Wen J et al (2011) Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids Surf A 373(1–3):29–35
69.
go back to reference Kim KT et al (2011) Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr Mater 64(2):181–184 Kim KT et al (2011) Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing. Scr Mater 64(2):181–184
70.
go back to reference Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63(3–4):441–443 Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63(3–4):441–443
71.
go back to reference Charinpanitkul T et al (2009) Single-step synthesis of nanocomposite of copper and carbon nanoparticles using arc discharge in liquid nitrogen. Mater Chem Phys 116(1):125–128 Charinpanitkul T et al (2009) Single-step synthesis of nanocomposite of copper and carbon nanoparticles using arc discharge in liquid nitrogen. Mater Chem Phys 116(1):125–128
72.
go back to reference Yu W et al (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4(5):465PubMedPubMedCentral Yu W et al (2009) Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett 4(5):465PubMedPubMedCentral
73.
go back to reference Cheng Z et al (2011) Facile fabrication of ultrasmall and uniform copper nanoparticles. Mater Lett 65(19–20):3005–3008 Cheng Z et al (2011) Facile fabrication of ultrasmall and uniform copper nanoparticles. Mater Lett 65(19–20):3005–3008
74.
go back to reference Solanki JN, Sengupta R, Murthy Z (2010) Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci 12(9):1560–1566 Solanki JN, Sengupta R, Murthy Z (2010) Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci 12(9):1560–1566
75.
go back to reference Park BK et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424PubMed Park BK et al (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311(2):417–424PubMed
76.
go back to reference Firmansyah DA et al (2009) Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25(12):7063–7071PubMed Firmansyah DA et al (2009) Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25(12):7063–7071PubMed
77.
go back to reference Blackford R (1998) Performance demands on aerospace paints relative to environmental legislation. Aircr Eng Aerosp Technol 70(6):451–455 Blackford R (1998) Performance demands on aerospace paints relative to environmental legislation. Aircr Eng Aerosp Technol 70(6):451–455
78.
go back to reference Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622 Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622
79.
go back to reference Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079 Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079
80.
go back to reference Pandey JK et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250 Pandey JK et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88(2):234–250
81.
go back to reference Choa Y-H et al (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1–2):12–19 Choa Y-H et al (2003) Preparation and characterization of metal/ceramic nanoporous nanocomposite powders. J Magn Magn Mater 266(1–2):12–19
82.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63 Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63
83.
go back to reference Hussain F et al (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575 Hussain F et al (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575
84.
go back to reference Choi S-M, Awaji H (2005) Nanocomposites—a new material design concept. Sci Technol Adv Mater 6(1):2 Choi S-M, Awaji H (2005) Nanocomposites—a new material design concept. Sci Technol Adv Mater 6(1):2
85.
go back to reference Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37 Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37
86.
go back to reference Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772 Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772
87.
go back to reference Thompson CM et al (2003) Preparation and characterization of metal oxide/polyimide nanocomposites. Compos Sci Technol 63(11):1591–1598 Thompson CM et al (2003) Preparation and characterization of metal oxide/polyimide nanocomposites. Compos Sci Technol 63(11):1591–1598
88.
go back to reference Meda L et al (2005) Nano-composites for rocket solid propellants. Compos Sci Technol 65(5):769–773 Meda L et al (2005) Nano-composites for rocket solid propellants. Compos Sci Technol 65(5):769–773
89.
go back to reference Nalwa HS (2000) Handbook of advanced electronic and photonic materials and devices, vol 1. Academic Press, Cambridge Nalwa HS (2000) Handbook of advanced electronic and photonic materials and devices, vol 1. Academic Press, Cambridge
90.
go back to reference Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research. In: Avouris P (ed) Carbon nanotubes. Springer, pp 1–9 Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research. In: Avouris P (ed) Carbon nanotubes. Springer, pp 1–9
91.
go back to reference Meador M et al (2012) Nanotechnology roadmap technology area 10. National Aeronautics and Space Administration (NASA), Washington Meador M et al (2012) Nanotechnology roadmap technology area 10. National Aeronautics and Space Administration (NASA), Washington
92.
go back to reference Malsch I (2013) The just war theory and the ethical governance of research. Sci Eng Ethics 19(2):461–486PubMed Malsch I (2013) The just war theory and the ethical governance of research. Sci Eng Ethics 19(2):461–486PubMed
93.
go back to reference Lee T-W et al (2016) Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos Sci Technol 123:57–64 Lee T-W et al (2016) Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Compos Sci Technol 123:57–64
94.
go back to reference Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975 Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975
95.
go back to reference Gohardani AS, Doulgeris G, Singh R (2011) Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog Aerosp Sci 47(5):369–391 Gohardani AS, Doulgeris G, Singh R (2011) Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog Aerosp Sci 47(5):369–391
96.
go back to reference Gohardani AS, Gohardani O (2012) Ceramic engine considerations for future aerospace propulsion. Aircr Eng Aerosp Technol 84(2):75–86 Gohardani AS, Gohardani O (2012) Ceramic engine considerations for future aerospace propulsion. Aircr Eng Aerosp Technol 84(2):75–86
97.
go back to reference Gohardani AS (2013) A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation. Prog Aerosp Sci 57:25–70 Gohardani AS (2013) A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation. Prog Aerosp Sci 57:25–70
98.
go back to reference Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32(4):328–334 Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32(4):328–334
99.
go back to reference Allaoui A et al (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998 Allaoui A et al (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998
100.
go back to reference Song PA et al (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091 Song PA et al (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091
101.
go back to reference Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112 Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112
102.
go back to reference O’Donnell SE (2003) Impact of nanomaterials in airframes on commercial aviation. In: AIAA third annual aviation technology, integration, and operations (ATIO) technology conference. The American Institute of Aeronautics and Astronautics, Denver, CO O’Donnell SE (2003) Impact of nanomaterials in airframes on commercial aviation. In: AIAA third annual aviation technology, integration, and operations (ATIO) technology conference. The American Institute of Aeronautics and Astronautics, Denver, CO
103.
go back to reference Heimann M et al (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Electronic components and technology conference, 2008. ECTC 2008. 58th. IEEE Heimann M et al (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Electronic components and technology conference, 2008. ECTC 2008. 58th. IEEE
104.
go back to reference Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792PubMed Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792PubMed
105.
go back to reference Cinausero N et al (2008) Fire retardancy of polymers: new strategies and mechanisms. Royal Society of Chemistry, London Cinausero N et al (2008) Fire retardancy of polymers: new strategies and mechanisms. Royal Society of Chemistry, London
106.
go back to reference Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2):169–182 Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2):169–182
Metadata
Title
A review featuring the fundamentals and advancements of polymer/CNT nanocomposite application in aerospace industry
Authors
Anila Iqbal
Aamer Saeed
Anwar Ul-Hamid
Publication date
06-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 1/2021
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-03096-0

Other articles of this Issue 1/2021

Polymer Bulletin 1/2021 Go to the issue

Premium Partners