Skip to main content
Top
Published in: Rock Mechanics and Rock Engineering 4/2014

01-07-2014 | Review Paper

A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials

Authors: Q. B. Zhang, J. Zhao

Published in: Rock Mechanics and Rock Engineering | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this review is to discuss the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials. The review begins by briefly introducing the history of rock dynamics and explaining the significance of studying these issues. Loading techniques commonly used for both intermediate and high strain rate tests and measurement techniques for dynamic stress and deformation are critically assessed in Sects. 2 and 3. In Sect. 4, methods of dynamic testing and estimation to obtain stress–strain curves at high strain rate are summarized, followed by an in-depth description of various dynamic mechanical properties (e.g. uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour. Some influencing rock structural features (i.e. microstructure, size and shape) and testing conditions (i.e. confining pressure, temperature and water saturation) are considered, ending with some popular semi-empirical rate-dependent equations for the enhancement of dynamic mechanical properties. Section 5 discusses physical mechanisms of strain rate effects. Section 6 describes phenomenological and mechanically based rate-dependent constitutive models established from the knowledge of the stress–strain behaviour and physical mechanisms. Section 7 presents dynamic fracture criteria for quasi-brittle materials. Finally, a brief summary and some aspects of prospective research are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Agbabian MS (1985) Design of structures to resist nuclear weapons effects, vol 42. Revised edn. Manual 42 of the Committee on Dynamic Effects of the Structural Division of ASCE, New York Agbabian MS (1985) Design of structures to resist nuclear weapons effects, vol 42. Revised edn. Manual 42 of the Committee on Dynamic Effects of the Structural Division of ASCE, New York
go back to reference Albertini C, Cadoni E, Labibes K (1999) Study of the mechanical properties of plain concrete under dynamic loading. Exp Mech 39(2):137–141. doi:10.1007/bf02331117 Albertini C, Cadoni E, Labibes K (1999) Study of the mechanical properties of plain concrete under dynamic loading. Exp Mech 39(2):137–141. doi:10.​1007/​bf02331117
go back to reference ASM (2000) High strain rate tension and compression tests. ASM Handbook, Mechanical Testing and Evaluation ASM Int, Materials Park OH 8:429–446 ASM (2000) High strain rate tension and compression tests. ASM Handbook, Mechanical Testing and Evaluation ASM Int, Materials Park OH 8:429–446
go back to reference ASTM (2008a) D2936-08 Standard test method for direct tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken ASTM (2008a) D2936-08 Standard test method for direct tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken
go back to reference ASTM (2008b) D3967-08 Standard test method for splitting tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken ASTM (2008b) D3967-08 Standard test method for splitting tensile strength of intact rock core specimens. Annual book of ASTM standards. ASTM International, West Conshohocken
go back to reference ASTM (2011) E1820-11 Standard test method for measurement of fracture toughness. Annual book of ASTM standards. ASTM International, West Conshohocken ASTM (2011) E1820-11 Standard test method for measurement of fracture toughness. Annual book of ASTM standards. ASTM International, West Conshohocken
go back to reference Atkinson BK (1987) Introduction to fracture mechanics and its geophysical applications. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 1–26 Atkinson BK (1987) Introduction to fracture mechanics and its geophysical applications. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 1–26
go back to reference Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291. doi:10.1007/bf00015688 Atkinson C, Smelser RE, Sanchez J (1982) Combined mode fracture via the cracked Brazilian disk test. Int J Fract 18(4):279–291. doi:10.​1007/​bf00015688
go back to reference Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402. doi:10.1007/s11340-008-9148-y Avril S, Bonnet M, Bretelle A-S, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402. doi:10.​1007/​s11340-008-9148-y
go back to reference Backers T, Fardin N, Dresen G, Stephansson O (2003) Effect of loading rate on mode I fracture toughness, roughness and micromechanics of sandstone. Int J Rock Mech Min 40(3):425–433. doi:10.1016/s1365-1609(03)00015-7 Backers T, Fardin N, Dresen G, Stephansson O (2003) Effect of loading rate on mode I fracture toughness, roughness and micromechanics of sandstone. Int J Rock Mech Min 40(3):425–433. doi:10.​1016/​s1365-1609(03)00015-7
go back to reference Bhat HS, Rosakis AJ, Sammis CG (2012) A micromechanics based constitutive model for brittle failure at high strain rates. J Appl Mech 79(3):031016. doi:10.1115/1.4005897 Bhat HS, Rosakis AJ, Sammis CG (2012) A micromechanics based constitutive model for brittle failure at high strain rates. J Appl Mech 79(3):031016. doi:10.​1115/​1.​4005897
go back to reference Blanton TL (1981) Effect of strain rates from 10−2 to 10 s−1 in triaxial compression tests on three rocks. Int J Rock Mech Min Sci Geomech Abstr 18(1):47–62. doi:10.1016/0148-9062(81)90265-5 Blanton TL (1981) Effect of strain rates from 10−2 to 10 s−1 in triaxial compression tests on three rocks. Int J Rock Mech Min Sci Geomech Abstr 18(1):47–62. doi:10.​1016/​0148-9062(81)90265-5
go back to reference Braithwaite C (2009) High strain rate properties of geological materials. PhD., University of Cambridge, Cambridge Braithwaite C (2009) High strain rate properties of geological materials. PhD., University of Cambridge, Cambridge
go back to reference Bratov V, Morozov NF, Petrov Y (2009) Dynamic strength of continuum. St.-Petersburg University Press, St.-Petersburg Bratov V, Morozov NF, Petrov Y (2009) Dynamic strength of continuum. St.-Petersburg University Press, St.-Petersburg
go back to reference Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676. doi:10.1007/s00603-010-0101-x Cadoni E (2010) Dynamic characterization of orthogneiss rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676. doi:10.​1007/​s00603-010-0101-x
go back to reference Cadoni E, Albertini C (2011) Modified Hopkinson bar technologies applied to the high strain rate rock tests. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 79–104 Cadoni E, Albertini C (2011) Modified Hopkinson bar technologies applied to the high strain rate rock tests. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 79–104
go back to reference Carmona S, Aguado A (2012) New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test. Mater Struct 45(10):1473–1485. doi:10.1617/s11527-012-9851-0 Carmona S, Aguado A (2012) New model for the indirect determination of the tensile stress–strain curve of concrete by means of the Brazilian test. Mater Struct 45(10):1473–1485. doi:10.​1617/​s11527-012-9851-0
go back to reference CEB (1988) Concrete structures under impact and impulsive loading. vol 187. Bulletin d’information, No187, CEB Comité Euro-International du Béton, Lausanne CEB (1988) Concrete structures under impact and impulsive loading. vol 187. Bulletin d’information, No187, CEB Comité Euro-International du Béton, Lausanne
go back to reference Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1–2):79–97. doi:10.1016/s0013-7952(02)00033-9 Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1–2):79–97. doi:10.​1016/​s0013-7952(02)00033-9
go back to reference Chen W, Ravichandran G (1996) An experimental technique for imposing dynamic multiaxial-compression with mechanical confinement. Exp Mech 36(2):155–158. doi:10.1007/bf02328712 Chen W, Ravichandran G (1996) An experimental technique for imposing dynamic multiaxial-compression with mechanical confinement. Exp Mech 36(2):155–158. doi:10.​1007/​bf02328712
go back to reference Chen WW, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer, New York Chen WW, Song B (2011) Split Hopkinson (Kolsky) bar: design, testing and applications. Springer, New York
go back to reference Cho SH, Kubota TS, Ogata Y, Yokota M, Kaneko K (2005) Microscopic visualization of a granitic rock subject to dynamic tensile loading by using a micro X-ray CT system. Sci Technol Energ Mater 66(4):334–339 Cho SH, Kubota TS, Ogata Y, Yokota M, Kaneko K (2005) Microscopic visualization of a granitic rock subject to dynamic tensile loading by using a micro X-ray CT system. Sci Technol Energ Mater 66(4):334–339
go back to reference Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):R59–R62. doi:10.1007/bf01157555 Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):R59–R62. doi:10.​1007/​bf01157555
go back to reference Christensen R, Swanson S, Brown W (1972) Split-Hopkinson-bar tests on rock under confining pressure. Exp Mech 12(11):508–513. doi:10.1007/bf02320747 Christensen R, Swanson S, Brown W (1972) Split-Hopkinson-bar tests on rock under confining pressure. Exp Mech 12(11):508–513. doi:10.​1007/​bf02320747
go back to reference Costin LS (1981) Static and dynamic fracture behaviour of oil shale. In: Freiman SW, Fuller ER (eds) Fracture mechanics for ceramics, rock and concrete, ASTM STP 745, vol 745. American Society for Testing and Materials, USA, pp 169–184 Costin LS (1981) Static and dynamic fracture behaviour of oil shale. In: Freiman SW, Fuller ER (eds) Fracture mechanics for ceramics, rock and concrete, ASTM STP 745, vol 745. American Society for Testing and Materials, USA, pp 169–184
go back to reference Dai F, Xia K, Luo SN (2008) Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. Rev Sci Instrum 79(12):123903–123906. doi:10.1063/1.3043420 Dai F, Xia K, Luo SN (2008) Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. Rev Sci Instrum 79(12):123903–123906. doi:10.​1063/​1.​3043420
go back to reference Dai F, Huang S, Xia K, Tan Z (2010c) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666. doi:10.1007/s00603-010-0091-8 Dai F, Huang S, Xia K, Tan Z (2010c) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666. doi:10.​1007/​s00603-010-0091-8
go back to reference Deganis LE, Zuo QH (2011) Crack-mechanics based brittle damage model including nonlinear equation of state and porosity growth. J Appl Phys 109(7):073504–073511. doi:10.1063/1.3562140 Deganis LE, Zuo QH (2011) Crack-mechanics based brittle damage model including nonlinear equation of state and porosity growth. J Appl Phys 109(7):073504–073511. doi:10.​1063/​1.​3562140
go back to reference Desmorat R, Chambart M, Gatuingt F, Guilbaud D (2010) Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading. Eng Fract Mech 77(12):2294–2315. doi:10.1016/j.engfracmech.2010.04.006 Desmorat R, Chambart M, Gatuingt F, Guilbaud D (2010) Delay-active damage versus non-local enhancement for anisotropic damage dynamics computations with alternated loading. Eng Fract Mech 77(12):2294–2315. doi:10.​1016/​j.​engfracmech.​2010.​04.​006
go back to reference Doan M-L, Gary G (2009) Rock pulverization at high strain rate near the San Andreas fault. Nat Geosci 2(10):709–712. doi:10.1038/ngeo640 Doan M-L, Gary G (2009) Rock pulverization at high strain rate near the San Andreas fault. Nat Geosci 2(10):709–712. doi:10.​1038/​ngeo640
go back to reference Dutta PK, Kim K (1993) High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures. U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory Dutta PK, Kim K (1993) High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures. U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory
go back to reference Ehrgott JQ, Sloan RC (1971) Development of a dynamic high-pressure triaxial test device. U.S. Army Engineer Waterways Experiment Station, Vicksburg Ehrgott JQ, Sloan RC (1971) Development of a dynamic high-pressure triaxial test device. U.S. Army Engineer Waterways Experiment Station, Vicksburg
go back to reference Fahrenthold EP (1991) A continuum damage model for fracture of brittle solids under dynamic loading. J Appl Mech 58(4):904–909. doi:10.1115/1.2897704 Fahrenthold EP (1991) A continuum damage model for fracture of brittle solids under dynamic loading. J Appl Mech 58(4):904–909. doi:10.​1115/​1.​2897704
go back to reference Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min 36(3):279–289. doi:10.1016/s0148-9062(99)00006-6 Fairhurst CE, Hudson JA (1999) Draft ISRM suggested method for the complete stress–strain curve for intact rock in uniaxial compression. Int J Rock Mech Min 36(3):279–289. doi:10.​1016/​s0148-9062(99)00006-6
go back to reference Fang Q, Ruan Z, Zhai C, Jiang X, Chen L, Fang W (2012) Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature. Chin J Rock Mech Eng 31(9):1756–1765 Fang Q, Ruan Z, Zhai C, Jiang X, Chen L, Fang W (2012) Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature. Chin J Rock Mech Eng 31(9):1756–1765
go back to reference Fischer MP, Elsworth D, Alleyamp RB, Engelder T (1996) Finite element analysis of the modified ring test for determining mode I fracture toughness. Int J Rock Mech Min 33(5):1–15. doi:10.1016/0148-9062(96)89926-8 Fischer MP, Elsworth D, Alleyamp RB, Engelder T (1996) Finite element analysis of the modified ring test for determining mode I fracture toughness. Int J Rock Mech Min 33(5):1–15. doi:10.​1016/​0148-9062(96)89926-8
go back to reference Fowell RJ (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min 32(1):57–64. doi:10.1016/0148-9062(94)00015-u Fowell RJ (1995) Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min 32(1):57–64. doi:10.​1016/​0148-9062(94)00015-u
go back to reference Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46. doi:10.1007/bf02323102 Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46. doi:10.​1007/​bf02323102
go back to reference Frew D, Forrestal M, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106. doi:10.1007/bf02411056 Frew D, Forrestal M, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106. doi:10.​1007/​bf02411056
go back to reference Friedman M, Perkins RD, Green SJ (1970) Observation of brittle-deformation features at the maximum stress of Westerly granite and Solnhofen limestone. Int J Rock Mech Min Sci Geomech Abstr 7(3):297–302. doi:10.1016/0148-9062(70)90043-4 Friedman M, Perkins RD, Green SJ (1970) Observation of brittle-deformation features at the maximum stress of Westerly granite and Solnhofen limestone. Int J Rock Mech Min Sci Geomech Abstr 7(3):297–302. doi:10.​1016/​0148-9062(70)90043-4
go back to reference Gálvez F, Rodríguez J, Sánchez V (2002) The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. Int J Impact Eng 27(2):161–177. doi:10.1016/S0734-743X(01)00039-2 Gálvez F, Rodríguez J, Sánchez V (2002) The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. Int J Impact Eng 27(2):161–177. doi:10.​1016/​S0734-743X(01)00039-2
go back to reference Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250. doi:10.1115/1.1704626 Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250. doi:10.​1115/​1.​1704626
go back to reference Gilat A (2000) Torsional Kolsky bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:505–515 Gilat A (2000) Torsional Kolsky bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:505–515
go back to reference Gilat A, Matrka TA (2011) A new compression intermediate strain rate testing apparatus. In: Proulx T (ed) The Society for Experimental Mechanics series, dynamic behavior of materials. Springer, New York, pp 425–429. doi:10.1007/978-1-4419-8228-5_64 Gilat A, Matrka TA (2011) A new compression intermediate strain rate testing apparatus. In: Proulx T (ed) The Society for Experimental Mechanics series, dynamic behavior of materials. Springer, New York, pp 425–429. doi:10.​1007/​978-1-4419-8228-5_​64
go back to reference Gilat A, Schmidt T, Walker A (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302. doi:10.1007/s11340-008-9157-x Gilat A, Schmidt T, Walker A (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49(2):291–302. doi:10.​1007/​s11340-008-9157-x
go back to reference Gomez JT, Shukla A, Sharma A (2002) Photoelastic evaluation of stress fields and fracture during dynamic splitting experiments. J Test Eval 30(3):186–196. doi:10.1520/JTE12306J Gomez JT, Shukla A, Sharma A (2002) Photoelastic evaluation of stress fields and fracture during dynamic splitting experiments. J Test Eval 30(3):186–196. doi:10.​1520/​JTE12306J
go back to reference Gong J, Malvern L (1990) Passively confined tests of axial dynamic compressive strength of concrete. Exp Mech 30(1):55–59. doi:10.1007/bf02322703 Gong J, Malvern L (1990) Passively confined tests of axial dynamic compressive strength of concrete. Exp Mech 30(1):55–59. doi:10.​1007/​bf02322703
go back to reference Gong JC, Malvern LE, Jenkins DA (1990) Dispersion investigation in the split Hopkinson pressure bar. J Eng Mater-T ASME 112(3):309–314. doi:10.1115/1.2903329 Gong JC, Malvern LE, Jenkins DA (1990) Dispersion investigation in the split Hopkinson pressure bar. J Eng Mater-T ASME 112(3):309–314. doi:10.​1115/​1.​2903329
go back to reference Gorham DA, Pope PH, Field JE (1992) An improved method for compressive stress–strain measurements at very high strain rates. Proc R Soc Lond A 438(1902):153–170. doi:10.1098/rspa.1992.0099 Gorham DA, Pope PH, Field JE (1992) An improved method for compressive stress–strain measurements at very high strain rates. Proc R Soc Lond A 438(1902):153–170. doi:10.​1098/​rspa.​1992.​0099
go back to reference Grady DE, Kipp ME (1987) Dynamic rock fragmentation. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 429–475 Grady DE, Kipp ME (1987) Dynamic rock fragmentation. In: Atkinson BK (ed) Fracture mechanics of rock. Academic, London, pp 429–475
go back to reference Gray GT III (2000) Classic split Hopkinson pressure bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:462–476 Gray GT III (2000) Classic split Hopkinson pressure bar testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:462–476
go back to reference Green SJ, Perkins RD (1968) Uniaxial compression tests at varying strain rates on three geologic materials. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, TX Green SJ, Perkins RD (1968) Uniaxial compression tests at varying strain rates on three geologic materials. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, TX
go back to reference Green S, Leasia J, Perkins R, Jones A (1972) Triaxial stress behavior of Solnhofen limestone and Westerly granite at high strain rates. J Geophys Res 77(20):3711–3724. doi:10.1029/JB077i020p03711 Green S, Leasia J, Perkins R, Jones A (1972) Triaxial stress behavior of Solnhofen limestone and Westerly granite at high strain rates. J Geophys Res 77(20):3711–3724. doi:10.​1029/​JB077i020p03711
go back to reference Hakalehto KO (1967) A study of the dynamic behaviour of rock using the Hopkinson split bar method. M.S., University of Minnesota, Minneapolis Hakalehto KO (1967) A study of the dynamic behaviour of rock using the Hopkinson split bar method. M.S., University of Minnesota, Minneapolis
go back to reference Hakalehto KO (1969) The behaviour of rock under impulse loads: a study using the Hopkinson split bar method. Acta Polytech Scand, Chem Technol Ser 81:1–60 Hakalehto KO (1969) The behaviour of rock under impulse loads: a study using the Hopkinson split bar method. Acta Polytech Scand, Chem Technol Ser 81:1–60
go back to reference Hao Y, Hao H (2013) Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mech Rock Eng 46(2):373–388. doi:10.1007/s00603-012-0268-4 Hao Y, Hao H (2013) Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate. Rock Mech Rock Eng 46(2):373–388. doi:10.​1007/​s00603-012-0268-4
go back to reference Heard HC (1963) Effect of large changes in strain rate in the experimental deformation of Yule marble. J Geol 71(2):162–195. doi:10.1086/626892 Heard HC (1963) Effect of large changes in strain rate in the experimental deformation of Yule marble. J Geol 71(2):162–195. doi:10.​1086/​626892
go back to reference Holloway DC, Patacca AM, Fourney WL (1977) Application of holographic interferometry to a study of wave propagation in rock. Exp Mech 17(8):281–289. doi:10.1007/bf02324957 Holloway DC, Patacca AM, Fourney WL (1977) Application of holographic interferometry to a study of wave propagation in rock. Exp Mech 17(8):281–289. doi:10.​1007/​bf02324957
go back to reference Hong L, Zhou Z, Yin T, Liao G, Ye Z (2009) Energy consumption in rock fragmentation at intermediate strain rate. J Cent South Univ Technol 16(4):677–682. doi:10.1007/s11771-009-0112-5 Hong L, Zhou Z, Yin T, Liao G, Ye Z (2009) Energy consumption in rock fragmentation at intermediate strain rate. J Cent South Univ Technol 16(4):677–682. doi:10.​1007/​s11771-009-0112-5
go back to reference Howe S, Goldsmith W, Sackman J (1974) Macroscopic static and dynamic mechanical properties of Yule marble. Exp Mech 14(9):337–346. doi:10.1007/bf02323559 Howe S, Goldsmith W, Sackman J (1974) Macroscopic static and dynamic mechanical properties of Yule marble. Exp Mech 14(9):337–346. doi:10.​1007/​bf02323559
go back to reference Huang C, Subhash G (2003) Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids. J Mech Phys Solids 51(6):1089–1105. doi:10.1016/s0022-5096(03)00002-4 Huang C, Subhash G (2003) Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids. J Mech Phys Solids 51(6):1089–1105. doi:10.​1016/​s0022-5096(03)00002-4
go back to reference Huang S, Xia K, Yan F, Feng X (2010b) An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng 43(6):677–683. doi:10.1007/s00603-010-0083-8 Huang S, Xia K, Yan F, Feng X (2010b) An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng 43(6):677–683. doi:10.​1007/​s00603-010-0083-8
go back to reference Huang S, Feng XT, Xia K (2011a) A dynamic punch method to quantify the dynamic shear strength of brittle solids. Rev Sci Instrum 82(5):053901–053905. doi:10.1063/1.3585983 Huang S, Feng XT, Xia K (2011a) A dynamic punch method to quantify the dynamic shear strength of brittle solids. Rev Sci Instrum 82(5):053901–053905. doi:10.​1063/​1.​3585983
go back to reference Islam MT, Bindiganavile V (2012) Stress rate sensitivity of Paskapoo sandstone under flexure. Can J Civ Eng 39(11):1184–1192. doi:10.1139/l2012-101 Islam MT, Bindiganavile V (2012) Stress rate sensitivity of Paskapoo sandstone under flexure. Can J Civ Eng 39(11):1184–1192. doi:10.​1139/​l2012-101
go back to reference ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16(2):135–140. doi:10.1016/0148-9062(79)91451-7 ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16(2):135–140. doi:10.​1016/​0148-9062(79)91451-7
go back to reference ISRM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci Geomech Abstr 20(6):285–290. doi:10.1016/0148-9062(83)90598-3 ISRM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci Geomech Abstr 20(6):285–290. doi:10.​1016/​0148-9062(83)90598-3
go back to reference Jia D, Ramesh K (2004) A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp Mech 44(5):445–454. doi:10.1007/bf02427955 Jia D, Ramesh K (2004) A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp Mech 44(5):445–454. doi:10.​1007/​bf02427955
go back to reference Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802–060839. doi:10.1115/1.3124647 Jiang F, Vecchio KS (2009) Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev 62(6):060802–060839. doi:10.​1115/​1.​3124647
go back to reference Jin JF, Li XB, Wang GS, Yin ZQ (2012) Failure modes and mechanisms of sandstone under cyclic impact loadings. J Cent South Univ Technol 43(4):1453–1461 Jin JF, Li XB, Wang GS, Yin ZQ (2012) Failure modes and mechanisms of sandstone under cyclic impact loadings. J Cent South Univ Technol 43(4):1453–1461
go back to reference Johnson GR, Holmquist TJ (1992) A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. In: Meyers MA, Murr LE, Staudhammer KP (eds) Shock-wave and high strain-rate phenomena in materials. Marcel-Dekker, New York, pp 1075–1081 Johnson GR, Holmquist TJ (1992) A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures. In: Meyers MA, Murr LE, Staudhammer KP (eds) Shock-wave and high strain-rate phenomena in materials. Marcel-Dekker, New York, pp 1075–1081
go back to reference Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309(1):981–984. doi:10.1063/1.46199 Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309(1):981–984. doi:10.​1063/​1.​46199
go back to reference Kachanov LM (1958) Time of the rupture process under creep conditions. Izv Akad Nauk SSSR, Otd Tekh Nauk 8:26–31 Kachanov LM (1958) Time of the rupture process under creep conditions. Izv Akad Nauk SSSR, Otd Tekh Nauk 8:26–31
go back to reference Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses: a review of recent work. Int J Fract 27(3):277–298. doi:10.1007/bf00017973 Kalthoff JF (1985) On the measurement of dynamic fracture toughnesses: a review of recent work. Int J Fract 27(3):277–298. doi:10.​1007/​bf00017973
go back to reference Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int J Numer Anal Meth Geomech 34(18):1877–1895. doi:10.1002/nag.884 Kazerani T, Zhao J (2010) Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int J Numer Anal Meth Geomech 34(18):1877–1895. doi:10.​1002/​nag.​884
go back to reference Khan AS, Irani FK (1987) An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech Mater 6(4):285–292. doi:10.1016/0167-6636(87)90027-5 Khan AS, Irani FK (1987) An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite. Mech Mater 6(4):285–292. doi:10.​1016/​0167-6636(87)90027-5
go back to reference Khokhlov M, Fischer A, Rittel D (2012) Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy. Exp Mech 52(8):975–991. doi:10.1007/s11340-011-9582-0 Khokhlov M, Fischer A, Rittel D (2012) Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy. Exp Mech 52(8):975–991. doi:10.​1007/​s11340-011-9582-0
go back to reference Kuhn H, Medlin D (2000) High strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–559 Kuhn H, Medlin D (2000) High strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–559
go back to reference Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):L33–L38 Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):L33–L38
go back to reference Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2013) ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng. doi:10.1007/s00603-013-0422-7 Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2013) ISRM-Suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng. doi:10.​1007/​s00603-013-0422-7
go back to reference Lankford JJ (1976) Dynamic strength of oil shale. Soc Petrol Eng J 16(1):17–22 Lankford JJ (1976) Dynamic strength of oil shale. Soc Petrol Eng J 16(1):17–22
go back to reference Lankford J (1981) The role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone-analogy with strong ceramics. Int J Rock Mech Min Sci Geomech Abstr 18:173–175. doi:10.1016/0148-9062(81)90742-7 Lankford J (1981) The role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone-analogy with strong ceramics. Int J Rock Mech Min Sci Geomech Abstr 18:173–175. doi:10.​1016/​0148-9062(81)90742-7
go back to reference Li XB, Lai HH, Gu DS (1993) Energy absorption of rock fragmentation under impulsive loads with different wave forms. Trans Nonferr Metal Soc 3(1):1–5–9 Li XB, Lai HH, Gu DS (1993) Energy absorption of rock fragmentation under impulsive loads with different wave forms. Trans Nonferr Metal Soc 3(1):1–5–9
go back to reference Li HB, Zhao J, Li TJ (2000a) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min 37(6):923–935. doi:10.1016/s1365-1609(00)00025-3 Li HB, Zhao J, Li TJ (2000a) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min 37(6):923–935. doi:10.​1016/​s1365-1609(00)00025-3
go back to reference Li XB, Lok TS, Zhao J, Zhao PJ (2000b) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min 37(7):1055–1060. doi:10.1016/s1365-1609(00)00037-x Li XB, Lok TS, Zhao J, Zhao PJ (2000b) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min 37(7):1055–1060. doi:10.​1016/​s1365-1609(00)00037-x
go back to reference Li HB, Zhao J, Li TJ, Yuan JX (2001) Analytical simulation of the dynamic compressive strength of a granite using the sliding crack model. Int J Numer Anal Meth Geomech 25(9):853–869. doi:10.1002/nag.156 Li HB, Zhao J, Li TJ, Yuan JX (2001) Analytical simulation of the dynamic compressive strength of a granite using the sliding crack model. Int J Numer Anal Meth Geomech 25(9):853–869. doi:10.​1002/​nag.​156
go back to reference Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY (2008a) Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol 15(2):218–223. doi:10.1007/s11771-008-0042-7 Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY (2008a) Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol 15(2):218–223. doi:10.​1007/​s11771-008-0042-7
go back to reference Li QM, Lu YB, Meng H (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Int J Impact Eng 36(12):1335–1345. doi:10.1016/j.ijimpeng.2009.04.010 Li QM, Lu YB, Meng H (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations. Int J Impact Eng 36(12):1335–1345. doi:10.​1016/​j.​ijimpeng.​2009.​04.​010
go back to reference Li XB, Yin TB, Zhou ZL, Hong L, Gao K (2010b) Study of dynamic properties of siltstone under coupling effects of temperature and pressure. Chin J Rock Mech Eng 29(12):2377–2384 Li XB, Yin TB, Zhou ZL, Hong L, Gao K (2010b) Study of dynamic properties of siltstone under coupling effects of temperature and pressure. Chin J Rock Mech Eng 29(12):2377–2384
go back to reference Li HB, Li JC, Liu B, Li J, Li S, Xia X (2013) Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech Rock Eng (in press). doi:10.1007/s00603-013-0406-7 Li HB, Li JC, Liu B, Li J, Li S, Xia X (2013) Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech Rock Eng (in press). doi:10.​1007/​s00603-013-0406-7
go back to reference Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9):963–980. doi:10.1016/s0749-6419(99)00021-2 Liang R, Khan AS (1999) A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast 15(9):963–980. doi:10.​1016/​s0749-6419(99)00021-2
go back to reference Lindholm US (ed) (1971) High strain rate tests, techniques of metals research, measurement of mechanical properties, vol 5. Wiley Interscience, New York Lindholm US (ed) (1971) High strain rate tests, techniques of metals research, measurement of mechanical properties, vol 5. Wiley Interscience, New York
go back to reference Lindholm US (1974) Review of dynamic testing techniques and material behaviour In: Harding J (ed) The 1st Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 3–21 Lindholm US (1974) Review of dynamic testing techniques and material behaviour In: Harding J (ed) The 1st Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 3–21
go back to reference Lipkin J, Grady DE, Campbell JD (1977) Dynamic flow and fracture of rock in pure shear. The 18th U.S. Symposium on Rock Mechanics (USRMS), Keystone, pp 77–0180 Lipkin J, Grady DE, Campbell JD (1977) Dynamic flow and fracture of rock in pure shear. The 18th U.S. Symposium on Rock Mechanics (USRMS), Keystone, pp 77–0180
go back to reference Lipkin J, Schuler KW, Parry T (1979) Dynamic torsional failure of limestone tubes. In: Harding J (ed) The 2nd conference on mechanical properties of materials at high rates of strain, Oxford, pp 101–110 Lipkin J, Schuler KW, Parry T (1979) Dynamic torsional failure of limestone tubes. In: Harding J (ed) The 2nd conference on mechanical properties of materials at high rates of strain, Oxford, pp 101–110
go back to reference Liu CP, Ju Y, Duan QQ (2010) Influence of internal characteristic length scale on dynamic crack propagating mechanism in rock materials. Rock Soil Mech 31(Suppl. 1):91–95 Liu CP, Ju Y, Duan QQ (2010) Influence of internal characteristic length scale on dynamic crack propagating mechanism in rock materials. Rock Soil Mech 31(Suppl. 1):91–95
go back to reference Logan JM, Handin J (1970) Triaxial compression testing at intermediate strain rates. The 12th U.S. Symposium on Rock Mechanics (USRMS), Missouri, pp 70–0167 Logan JM, Handin J (1970) Triaxial compression testing at intermediate strain rates. The 12th U.S. Symposium on Rock Mechanics (USRMS), Missouri, pp 70–0167
go back to reference Lou W (1994) Dynamic fracture behaviour of dry and waterlogged granites. Explo Shock Waves 14(3):249–254 Lou W (1994) Dynamic fracture behaviour of dry and waterlogged granites. Explo Shock Waves 14(3):249–254
go back to reference Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95(6):735–739 Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Mater J 95(6):735–739
go back to reference Malvern LE (1984) Experimental and theoretical approaches to characterisation of material behaviour at high rates of deformation. In: Harding J (ed) The 3rd Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 1–20 Malvern LE (1984) Experimental and theoretical approaches to characterisation of material behaviour at high rates of deformation. In: Harding J (ed) The 3rd Conference on Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 1–20
go back to reference Malvern LE, Jenkens DA (1990) Dynamic testing of laterally confined concrete, technical report. Tyndall Air Force Base, Florida Malvern LE, Jenkens DA (1990) Dynamic testing of laterally confined concrete, technical report. Tyndall Air Force Base, Florida
go back to reference Malvern LE, Jenkinds DA, Tang T, McLure S (1991) Dynamic testing of laterally confined concrete. Micromechanics of failure of quasi brittle materials. Elsevier Applied Science, London Malvern LE, Jenkinds DA, Tang T, McLure S (1991) Dynamic testing of laterally confined concrete. Micromechanics of failure of quasi brittle materials. Elsevier Applied Science, London
go back to reference Masuda K, Mizutani H, Yamada I (1987) Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J Phys Earth 35:37–66 Masuda K, Mizutani H, Yamada I (1987) Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J Phys Earth 35:37–66
go back to reference Meyers MA (1994) Dynamic behavior of materials. Wiley, New York Meyers MA (1994) Dynamic behavior of materials. Wiley, New York
go back to reference Morozov NF, Petrov YV (2000) Dynamics of fracture. Springer-Verlag, New York Morozov NF, Petrov YV (2000) Dynamics of fracture. Springer-Verlag, New York
go back to reference Nakano M, Kishida K, Yamauchi Y, Sogabe Y (1994) Dynamic fracture initiation in brittle materials under combined mode I/II loading. J Phys IV Fr 4(C8):695–700. doi:10.1051/jp4:19948106 Nakano M, Kishida K, Yamauchi Y, Sogabe Y (1994) Dynamic fracture initiation in brittle materials under combined mode I/II loading. J Phys IV Fr 4(C8):695–700. doi:10.​1051/​jp4:​19948106
go back to reference Nemat-Nasser S (2000) Introduction to high strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–428 Nemat-Nasser S (2000) Introduction to high strain rate testing. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:427–428
go back to reference Nemat-Nasser S, Horii H (1982) Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res 87(B8):6805–6821. doi:10.1029/JB087iB08p06805 Nemat-Nasser S, Horii H (1982) Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J Geophys Res 87(B8):6805–6821. doi:10.​1029/​JB087iB08p06805
go back to reference Nemat-Nasser S, Isaacs J, Rome J (2000) Triaxial Hopkinson techniques. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:516–518 Nemat-Nasser S, Isaacs J, Rome J (2000) Triaxial Hopkinson techniques. ASM handbook, mechanical testing and evaluation. ASM International, Materials Park OH 8:516–518
go back to reference Nicholas T (1982) Material behavior at high strain rates. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York, pp 277–332 Nicholas T (1982) Material behavior at high strain rates. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York, pp 277–332
go back to reference Nojima T, Ogawa K (1989) Impact strength of ceramics at high temperatures. In: Harding J (ed) The 4th International Conference on the Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 371–378 Nojima T, Ogawa K (1989) Impact strength of ceramics at high temperatures. In: Harding J (ed) The 4th International Conference on the Mechanical Properties of Materials at High Rates of Strain, Oxford, pp 371–378
go back to reference Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminium sheets. Int J Fract 90(1):153–174. doi:10.1023/a:1007439301360 Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminium sheets. Int J Fract 90(1):153–174. doi:10.​1023/​a:​1007439301360
go back to reference Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45(5):440–446. doi:10.1007/bf02427992 Pan Y, Chen W, Song B (2005) Upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45(5):440–446. doi:10.​1007/​bf02427992
go back to reference Paterson MS, Wong T-F (2005) Experimental rock deformation: The brittle field, 2nd edn. Springer-Verlag, Berlin Paterson MS, Wong T-F (2005) Experimental rock deformation: The brittle field, 2nd edn. Springer-Verlag, Berlin
go back to reference Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415. doi:10.1016/j.ijimpeng.2011.01.004 Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415. doi:10.​1016/​j.​ijimpeng.​2011.​01.​004
go back to reference Perkins RD, Green SJ, Friedman M (1970) Uniaxial stress behavior of porphyritic tonalite at strain rates to 103/second. Int J Rock Mech Min Sci Geomech Abstr 7(5):527–528, IN5–IN6, 529–535. doi:10.1016/0148-9062(70)90005-7 Perkins RD, Green SJ, Friedman M (1970) Uniaxial stress behavior of porphyritic tonalite at strain rates to 103/second. Int J Rock Mech Min Sci Geomech Abstr 7(5):527–528, IN5–IN6, 529–535. doi:10.​1016/​0148-9062(70)90005-7
go back to reference Persen LN (1975) Rock dynamics and geophysical exploration, vol 8. Developments in Geotechnical Engineering, Elsevier, New York Persen LN (1975) Rock dynamics and geophysical exploration, vol 8. Developments in Geotechnical Engineering, Elsevier, New York
go back to reference Pierron F, Sutton M, Tiwari V (2011) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51(4):537–563. doi:10.1007/s11340-010-9402-y Pierron F, Sutton M, Tiwari V (2011) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on an aluminium bar. Exp Mech 51(4):537–563. doi:10.​1007/​s11340-010-9402-y
go back to reference Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. M.S., Colorado State University, Golden Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. M.S., Colorado State University, Golden
go back to reference Rabotnov YN (1963) On the equations of state for creep. In: Progress in applied mechanics, the Prager anniversary volume. Macmillan, New York Rabotnov YN (1963) On the equations of state for creep. In: Progress in applied mechanics, the Prager anniversary volume. Macmillan, New York
go back to reference Ramesh KT, Narasimhan S (1996) Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int J Solids Struct 33(25):3723–3738. doi:10.1016/0020-7683(95)00206-5 Ramesh KT, Narasimhan S (1996) Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int J Solids Struct 33(25):3723–3738. doi:10.​1016/​0020-7683(95)00206-5
go back to reference Ravi-Chandar K (2004) Dynamic fracture. Elsevier Science, London Ravi-Chandar K (2004) Dynamic fracture. Elsevier Science, London
go back to reference Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25(4):247–262. doi:10.1007/bf00963460 Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25(4):247–262. doi:10.​1007/​bf00963460
go back to reference Reinhardt HW, Weerheijm J (1991) Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects. Int J Fract 51(1):31–42. doi:10.1007/bf00020851 Reinhardt HW, Weerheijm J (1991) Tensile fracture of concrete at high loading rates taking account of inertia and crack velocity effects. Int J Fract 51(1):31–42. doi:10.​1007/​bf00020851
go back to reference Rodríguez J, Navarro C, Sánchez V (1994) Splitting tests: an alternative to determine the dynamic tensile strength of ceramic materials. J Phys IV Fr 4(C8):101–106. doi:10.1051/jp4:1994815 Rodríguez J, Navarro C, Sánchez V (1994) Splitting tests: an alternative to determine the dynamic tensile strength of ceramic materials. J Phys IV Fr 4(C8):101–106. doi:10.​1051/​jp4:​1994815
go back to reference Rome J, Isaacs J, Nemat-Nasser S (2004) Hopkinson techniques for dynamic triaxial compression tests. In: Gdoutos E (ed) Recent advances in experimental mechanics. Springer, The Netherlands, pp 3–12. doi:10.1007/0-306-48410-2_1 Rome J, Isaacs J, Nemat-Nasser S (2004) Hopkinson techniques for dynamic triaxial compression tests. In: Gdoutos E (ed) Recent advances in experimental mechanics. Springer, The Netherlands, pp 3–12. doi:10.​1007/​0-306-48410-2_​1
go back to reference Rosakis AJ (1999) Explosion at the parthenon: can we pick up the pieces? Report No. CalCIT SM report 99-3. California Institute of Technology, Pasadena Rosakis AJ (1999) Explosion at the parthenon: can we pick up the pieces? Report No. CalCIT SM report 99-3. California Institute of Technology, Pasadena
go back to reference Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481 Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86(5):475–481
go back to reference Rossi P (1991) A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates. Mater Struct 24(6):422–424. doi:10.1007/bf02472015 Rossi P (1991) A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates. Mater Struct 24(6):422–424. doi:10.​1007/​bf02472015
go back to reference Rossi P, Toutlemonde F (1996) Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms. Mater Struct 29(2):116–118. doi:10.1007/bf02486201 Rossi P, Toutlemonde F (1996) Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms. Mater Struct 29(2):116–118. doi:10.​1007/​bf02486201
go back to reference Rossi P, Van Mier J, Toutlemonde F, Le Maou F, Boulay C (1994) Effect of loading rate on the strength of concrete subjected to uniaxial tension. Mater Struct 27(5):260–264. doi:10.1007/bf02473042 Rossi P, Van Mier J, Toutlemonde F, Le Maou F, Boulay C (1994) Effect of loading rate on the strength of concrete subjected to uniaxial tension. Mater Struct 27(5):260–264. doi:10.​1007/​bf02473042
go back to reference Saksala T (2010) Damage-viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. Int J Numer Anal Meth Geomech 34(13):1362–1386. doi:10.1002/nag.868 Saksala T (2010) Damage-viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. Int J Numer Anal Meth Geomech 34(13):1362–1386. doi:10.​1002/​nag.​868
go back to reference Sato K, Kawakita M, Kinoshita S (1981) The dynamic fracture properties of rocks under confining pressure. Mem Fac Eng, Hokkaido Univ 15(4):467–478 Sato K, Kawakita M, Kinoshita S (1981) The dynamic fracture properties of rocks under confining pressure. Mem Fac Eng, Hokkaido Univ 15(4):467–478
go back to reference Schardin H (1959) Velocity effects in fracture. In: Averbach BL, Felbeck DK, Thomas DA (eds) Fracture. Wiley, New York, pp 297–330 Schardin H (1959) Velocity effects in fracture. In: Averbach BL, Felbeck DK, Thomas DA (eds) Fracture. Wiley, New York, pp 297–330
go back to reference Serdengecti S, Boozer GD (1961) The effects of strain rate and temperature on the behavior of rocks subjected to triaxial compression. The 4th U.S. Symposium on Rock Mechanics (USRMS), Pennsylvania, pp 83–97 Serdengecti S, Boozer GD (1961) The effects of strain rate and temperature on the behavior of rocks subjected to triaxial compression. The 4th U.S. Symposium on Rock Mechanics (USRMS), Pennsylvania, pp 83–97
go back to reference Shan R, Jiang Y, Li B (2000) Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique. Int J Rock Mech Min 37(6):983–992. doi:10.1016/s1365-1609(00)00031-9 Shan R, Jiang Y, Li B (2000) Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique. Int J Rock Mech Min 37(6):983–992. doi:10.​1016/​s1365-1609(00)00031-9
go back to reference Siviour CR, Grantham SG (2009) High resolution optical measurements of specimen deformation in the split Hopkinson pressure bar. Imag Sci J 57(6):333–343. doi:10.1179/174313109x454792 Siviour CR, Grantham SG (2009) High resolution optical measurements of specimen deformation in the split Hopkinson pressure bar. Imag Sci J 57(6):333–343. doi:10.​1179/​174313109x454792​
go back to reference Siviour CR, Arthington MR, Wielewski E, Petrinic N (2012) Increasing data from high rate characterization experiments using optical reconstruction. AIP Conf Proc 1426(1):438–441. doi:10.1063/1.3686312 Siviour CR, Arthington MR, Wielewski E, Petrinic N (2012) Increasing data from high rate characterization experiments using optical reconstruction. AIP Conf Proc 1426(1):438–441. doi:10.​1063/​1.​3686312
go back to reference Song B, Syn C, Grupido C, Chen W, Lu WY (2008) A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials. Exp Mech 48(6):809–815. doi:10.1007/s11340-007-9095-z Song B, Syn C, Grupido C, Chen W, Lu WY (2008) A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials. Exp Mech 48(6):809–815. doi:10.​1007/​s11340-007-9095-z
go back to reference Stacey TR (1980) A simple device for the direct shear-strength testing of intact rock. J S Afr Inst Min Metall 80(3):129–130 Stacey TR (1980) A simple device for the direct shear-strength testing of intact rock. J S Afr Inst Min Metall 80(3):129–130
go back to reference Stowe RL, Ainsworth DL (1968) Effect of rate of loading on strength and Young’s modulus of elasticity of rock. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 3–34 Stowe RL, Ainsworth DL (1968) Effect of rate of loading on strength and Young’s modulus of elasticity of rock. The 10th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 3–34
go back to reference Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York Sutton MA, Orteu J-J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York
go back to reference Toutlemonde F, Gary G (2009) Dynamic behavior of concrete: Experimental aspects. In: Mazars J, Millard A (eds) Dynamic behavior of concrete and seismic engineering. ISTE Ltd, London, pp 1–54. doi:10.1002/9780470611555.ch1 Toutlemonde F, Gary G (2009) Dynamic behavior of concrete: Experimental aspects. In: Mazars J, Millard A (eds) Dynamic behavior of concrete and seismic engineering. ISTE Ltd, London, pp 1–54. doi:10.​1002/​9780470611555.​ch1
go back to reference Van de Ven M, Smit AF, Krans RL (1997) Possibilities of a semi-circular bending test. The 8th International Conference on Asphalt Pavements, Seattle, pp 939–950 Van de Ven M, Smit AF, Krans RL (1997) Possibilities of a semi-circular bending test. The 8th International Conference on Asphalt Pavements, Seattle, pp 939–950
go back to reference Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv Appl Ceram 109(8):446–466. doi:10.1179/174367609x422180 Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv Appl Ceram 109(8):446–466. doi:10.​1179/​174367609x422180​
go back to reference Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min 41(2):245–253. doi:10.1016/s1365-1609(03)00093-5 Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist PA (2004) The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: analytical and numerical results. Int J Rock Mech Min 41(2):245–253. doi:10.​1016/​s1365-1609(03)00093-5
go back to reference Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163(5):1091–1100. doi:10.1007/s00024-006-0056-8 Wang QZ, Li W, Song XL (2006) A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB. Pure Appl Geophys 163(5):1091–1100. doi:10.​1007/​s00024-006-0056-8
go back to reference Wang B, Li X, Yin T, Ma C, Yin Z, Li Z (2010a) Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone. Chin J Rock Mech Eng 29(5):1003–1009 Wang B, Li X, Yin T, Ma C, Yin Z, Li Z (2010a) Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone. Chin J Rock Mech Eng 29(5):1003–1009
go back to reference Wang LL, Zhou FH, Sun ZJ, Wang YZ, Shi SQ (2010b) Studies on rate-dependent macro-damage evolution of materials at high strain rates. Int J Damage Mech 19(7):805–820. doi:10.1177/1056789509359654 Wang LL, Zhou FH, Sun ZJ, Wang YZ, Shi SQ (2010b) Studies on rate-dependent macro-damage evolution of materials at high strain rates. Int J Damage Mech 19(7):805–820. doi:10.​1177/​1056789509359654​
go back to reference Wang QZ, Zhang S, Xie HP (2010c) Rock dynamic fracture toughness tested with holed-cracked flattened Brazilian discs diametrically impacted by SHPB and its size effect. Exp Mech 50(7):877–885. doi:10.1007/s11340-009-9265-2 Wang QZ, Zhang S, Xie HP (2010c) Rock dynamic fracture toughness tested with holed-cracked flattened Brazilian discs diametrically impacted by SHPB and its size effect. Exp Mech 50(7):877–885. doi:10.​1007/​s11340-009-9265-2
go back to reference Wang QZ, Feng F, Ni M, Gou XP (2011a) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. doi:10.1016/j.engfracmech.2011.06.004 Wang QZ, Feng F, Ni M, Gou XP (2011a) Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar. Eng Fract Mech 78(12):2455–2469. doi:10.​1016/​j.​engfracmech.​2011.​06.​004
go back to reference Wang SS, Zhang MH, Quek ST (2011b) Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test. J Test Eval 39(5):898–907. doi:10.1520/JTE103370 Wang SS, Zhang MH, Quek ST (2011b) Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test. J Test Eval 39(5):898–907. doi:10.​1520/​JTE103370
go back to reference Wu PP (1971) The split Hopkinson bar method of rock testing. M.S., Colorado School of Mines, Golden Wu PP (1971) The split Hopkinson bar method of rock testing. M.S., Colorado School of Mines, Golden
go back to reference Xia K (2013a) A Mohr–Coulomb failure criterion for rocks subjected to dynamic loading. In: Yang Q, Zhang J-M, Zheng H, Yao Y (eds) Constitutive modeling of geomaterials. Springer series in geomechanics and geoengineering. Springer, Berlin, pp 367–370. doi:10.1007/978-3-642-32814-5_51 Xia K (2013a) A Mohr–Coulomb failure criterion for rocks subjected to dynamic loading. In: Yang Q, Zhang J-M, Zheng H, Yao Y (eds) Constitutive modeling of geomaterials. Springer series in geomechanics and geoengineering. Springer, Berlin, pp 367–370. doi:10.​1007/​978-3-642-32814-5_​51
go back to reference Xia K (2013b) Status of characterization of strength and fracture properties of rocks under dynamic loading. In: Proceedings of the 10th international symposium on rock fragmentation by blasting, FRAGBLAST, New Delhi, pp 41–51 Xia K (2013b) Status of characterization of strength and fracture properties of rocks under dynamic loading. In: Proceedings of the 10th international symposium on rock fragmentation by blasting, FRAGBLAST, New Delhi, pp 41–51
go back to reference Green SJ, Perkins RD (1969) Uniaxial compression tests at strain rates from 0.0001/sec to 1000/sec on three geologic materials. General Motors Technical Center, Materials and Structures Lab Report, Warren Green SJ, Perkins RD (1969) Uniaxial compression tests at strain rates from 0.0001/sec to 1000/sec on three geologic materials. General Motors Technical Center, Materials and Structures Lab Report, Warren
go back to reference Yan F, Feng XT, Chen R, Xia K, Jin C (2012) Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech Rock Eng 45(3):341–348. doi:10.1007/s00603-011-0177-y Yan F, Feng XT, Chen R, Xia K, Jin C (2012) Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mech Rock Eng 45(3):341–348. doi:10.​1007/​s00603-011-0177-y
go back to reference Yin TB, Li XB, Xia K, Huang S (2012a) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094. doi:10.1007/s00603-012-0240-3 Yin TB, Li XB, Xia K, Huang S (2012a) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094. doi:10.​1007/​s00603-012-0240-3
go back to reference Yin ZQ, Li XB, Jin JF, He XQ, Du K (2012b) Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Trans Nonferr Metal Soc 22(1):175–184. doi:10.1016/s1003-6326(11)61158-8 Yin ZQ, Li XB, Jin JF, He XQ, Du K (2012b) Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Trans Nonferr Metal Soc 22(1):175–184. doi:10.​1016/​s1003-6326(11)61158-8
go back to reference Young C, Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. The 20th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 79–0299 Young C, Powell CN (1979) Lateral inertia effects on rock failure in split-Hopkinson-bar experiments. The 20th U.S. Symposium on Rock Mechanics (USRMS), Austin, pp 79–0299
go back to reference Yu Y (1992) Study on dynamic characteristic of rocks using triaxial SHPB. Chin J Geotech Eng 14(3):76–79 Yu Y (1992) Study on dynamic characteristic of rocks using triaxial SHPB. Chin J Geotech Eng 14(3):76–79
go back to reference Yu Y, Zhang ZX (1995) Determining critical time of rock dynamic fracture by dynamic Moire method. J Univ Sci Tech Beijing 2(2):109–113 Yu Y, Zhang ZX (1995) Determining critical time of rock dynamic fracture by dynamic Moire method. J Univ Sci Tech Beijing 2(2):109–113
go back to reference Yuan F, Prakash V (2008) Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates. Int J Solids Struct 45(14–15):4247–4263. doi:10.1016/j.ijsolstr.2008.03.012 Yuan F, Prakash V (2008) Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates. Int J Solids Struct 45(14–15):4247–4263. doi:10.​1016/​j.​ijsolstr.​2008.​03.​012
go back to reference Zhang S, Wang QZ (2009) Determination of rock fracture toughness by split test using five types of disc specimens. Rock Soil Mech 30(1):12–18 Zhang S, Wang QZ (2009) Determination of rock fracture toughness by split test using five types of disc specimens. Rock Soil Mech 30(1):12–18
go back to reference Zhang QB, Zhao J (2013c) A micromechanics-based model for dynamic behaviour of rock. Int J Rock Mech Min submitted Zhang QB, Zhao J (2013c) A micromechanics-based model for dynamic behaviour of rock. Int J Rock Mech Min submitted
go back to reference Zhang QB, Zhao J (2013d) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. Rock Mech Rock Eng submitted Zhang QB, Zhao J (2013d) Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms. Rock Mech Rock Eng submitted
go back to reference Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762. doi:10.1016/s1365-1609(00)00008-3 Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min 37(5):745–762. doi:10.​1016/​s1365-1609(00)00008-3
go back to reference Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001b) On study of influences of loading rate on fractal dimensions of fracture surfaces in gabbro. Rock Mech Rock Eng 34(3):235–242. doi:10.1007/s006030170011 Zhang ZX, Yu J, Kou SQ, Lindqvist PA (2001b) On study of influences of loading rate on fractal dimensions of fracture surfaces in gabbro. Rock Mech Rock Eng 34(3):235–242. doi:10.​1007/​s006030170011
go back to reference Zhang M, Wu HJ, Li QM, Huang FL (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int J Impact Eng 36(12):1327–1334. doi:10.1016/j.ijimpeng.2009.04.009 Zhang M, Wu HJ, Li QM, Huang FL (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int J Impact Eng 36(12):1327–1334. doi:10.​1016/​j.​ijimpeng.​2009.​04.​009
go back to reference Zhao J (2011) An overview of some recent progress in rock dynamics research. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 5–33 Zhao J (2011) An overview of some recent progress in rock dynamics research. In: Zhou YX, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, USA, pp 5–33
go back to reference Zhao H, Gary G (1996) On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains. Int J Solids Struct 33(23):3363–3375. doi:10.1016/0020-7683(95)00186-7 Zhao H, Gary G (1996) On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains. Int J Solids Struct 33(23):3363–3375. doi:10.​1016/​0020-7683(95)00186-7
go back to reference Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202. doi:10.1016/s0022-5096(96)00117-2 Zhao H, Gary G (1997) A new method for the separation of waves. Application to the SHPB technique for an unlimited duration of measurement. J Mech Phys Solids 45(7):1185–1202. doi:10.​1016/​s0022-5096(96)00117-2
go back to reference Zhao J, Li HB, Zhao YH (1998) Dynamics strength tests of the Bukit Timah granite. Geotechnical research report NTU/GT/98-2. Nanyang Technological University, Singapore Zhao J, Li HB, Zhao YH (1998) Dynamics strength tests of the Bukit Timah granite. Geotechnical research report NTU/GT/98-2. Nanyang Technological University, Singapore
go back to reference Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999b) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526. doi:10.1016/s0886-7798(00)00013-4 Zhao J, Zhou YX, Hefny AM, Cai JG, Chen SG, Li HB, Liu JF, Jain M, Foo ST, Seah CC (1999b) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Sp Tech 14(4):513–526. doi:10.​1016/​s0886-7798(00)00013-4
go back to reference Zhao J, Zhou YX, Ma GW (2008) Rock failure, wave propagation and tunnel stability under dynamic loads. In: Majdi A (ed) The 5th Asian rock mechanics symposium, Tehran, pp 167–181 Zhao J, Zhou YX, Ma GW (2008) Rock failure, wave propagation and tunnel stability under dynamic loads. In: Majdi A (ed) The 5th Asian rock mechanics symposium, Tehran, pp 167–181
go back to reference Zhao PD, Lu FY, Chen R, Lin YL, Li JL, Lu L, Sun GL (2011) A technique for combined dynamic compression-shear test. Rev Sci Instrum 82(3):035110-035110. doi:10.1063/1.3557826 Zhao PD, Lu FY, Chen R, Lin YL, Li JL, Lu L, Sun GL (2011) A technique for combined dynamic compression-shear test. Rev Sci Instrum 82(3):035110-035110. doi:10.​1063/​1.​3557826
go back to reference Zhao J, Zhou YX, Xia KW (2012) Advances in rock dynamics modelling, testing and engineering. In: Qian QH, Zhou YX (eds) Harmonising rock engineering and the environment, CRC Press/Balkema, The Netherlands, pp 147–154 Zhao J, Zhou YX, Xia KW (2012) Advances in rock dynamics modelling, testing and engineering. In: Qian QH, Zhou YX (eds) Harmonising rock engineering and the environment, CRC Press/Balkema, The Netherlands, pp 147–154
go back to reference Zhou YX, Zhao J (eds) (2011) Advances in rock dynamics and applications. CRC Press, USA Zhou YX, Zhao J (eds) (2011) Advances in rock dynamics and applications. CRC Press, USA
go back to reference Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004 Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.​1016/​j.​ijrmms.​2011.​10.​004
go back to reference Zhou ZL, Li XB, Zou Y, Jiang YH, Li GN (2013a) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng (in press). doi:10.1007/s00603-013-0441-4 Zhou ZL, Li XB, Zou Y, Jiang YH, Li GN (2013a) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng (in press). doi:10.​1007/​s00603-013-0441-4
Metadata
Title
A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials
Authors
Q. B. Zhang
J. Zhao
Publication date
01-07-2014
Publisher
Springer Vienna
Published in
Rock Mechanics and Rock Engineering / Issue 4/2014
Print ISSN: 0723-2632
Electronic ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-013-0463-y

Other articles of this Issue 4/2014

Rock Mechanics and Rock Engineering 4/2014 Go to the issue