Skip to main content
Top

2022 | OriginalPaper | Chapter

A Review of Mass Spring Method Improvements for Modeling Soft Tissue Deformation

Authors : Mohd Nadzeri Omar, Yongmin Zhong

Published in: Human-Centered Technology for a Better Tomorrow

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Significant research efforts have been dedicated to the creation of virtual reality simulators that empower medical students to learn anatomy and surgery in a virtual environment and allow surgeons to practice surgical operations. The degree of realism is determined by the simulation's accuracy and the processing efficiency of its underlying models. Deformable models should ideally be able to precisely recreate soft tissue deformation simultaneously providing real-time visual and force feedback. One of the most well-known approaches is the Finite Element Method (FEM). It has been demonstrated that the FEM can effectively replicate soft tissue deformation, but it requires a significant processing cost to enable real-time interaction. In this context, the Mass Spring Method (MSM) has been suggested as an alternative. The standard MSM model mimics soft tissue deformation with excellent computational performance but is constrained to linear behavior because it is based on simple Hooke's law theory. This paper provides recent studies on the enhancement of the standard MSM model to examine the viability of the MSM model to simulate soft tissue deformation for surgical simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hsu WM, Hughes JF, Kaufman H (1992) Direct manipulation of free-form deformations. ACM SIGGRAPH Comput Graph 26:177–184CrossRef Hsu WM, Hughes JF, Kaufman H (1992) Direct manipulation of free-form deformations. ACM SIGGRAPH Comput Graph 26:177–184CrossRef
2.
go back to reference MacCracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques—SIGGRAPH ’96, pp 181–188 MacCracken R, Joy KI (1996) Free-form deformations with lattices of arbitrary topology. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques—SIGGRAPH ’96, pp 181–188
3.
go back to reference Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. ACM SIGGRAPH Comput Graph 21:205–214CrossRef Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. ACM SIGGRAPH Comput Graph 21:205–214CrossRef
4.
go back to reference Ishikawa T, Sera H, Morishima S, Terzopoulos D (1998) Facial image reconstruction by estimated muscle parameter. In: Proceedings third IEEE international conference on automatic face and gesture recognition, pp 342–347 Ishikawa T, Sera H, Morishima S, Terzopoulos D (1998) Facial image reconstruction by estimated muscle parameter. In: Proceedings third IEEE international conference on automatic face and gesture recognition, pp 342–347
5.
go back to reference Gibson SF (1997) 3D chainmail. In: Proceedings of the 1997 symposium on interactive 3D graphics—SI3D ’97, pp 149–154 Gibson SF (1997) 3D chainmail. In: Proceedings of the 1997 symposium on interactive 3D graphics—SI3D ’97, pp 149–154
6.
go back to reference Klaus-Jürgen B (2014) Finite element procedures. Prentice-Hall, Englewood Cliffs, N.J Klaus-Jürgen B (2014) Finite element procedures. Prentice-Hall, Englewood Cliffs, N.J
7.
go back to reference Bro-Nielsen M, Cotin S (1996) Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput Graph Forum 15:57–66CrossRef Bro-Nielsen M, Cotin S (1996) Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput Graph Forum 15:57–66CrossRef
8.
go back to reference Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27:650–663CrossRef Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27:650–663CrossRef
9.
go back to reference Brebbia CA (1982) boundary element methods in engineering. Springer, Berlin (U.A.) Brebbia CA (1982) boundary element methods in engineering. Springer, Berlin (U.A.)
10.
go back to reference Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRef Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRef
11.
go back to reference Xu S, Liu XP, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor—mass visual model for surgery simulation. IEEE Trans Instrum Meas 60:14–20CrossRef Xu S, Liu XP, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor—mass visual model for surgery simulation. IEEE Trans Instrum Meas 60:14–20CrossRef
12.
go back to reference Cooper L, Maddock S (1997) Preventing collapse within mass-spring-damper models of deformable objects. In: 5th international conference centre Europe, computer graphic visual, vol 2, no 1, pp 196–204 Cooper L, Maddock S (1997) Preventing collapse within mass-spring-damper models of deformable objects. In: 5th international conference centre Europe, computer graphic visual, vol 2, no 1, pp 196–204
13.
go back to reference Teschner M, Girod S, Girod B (2000) Direct computation of nonlinear soft-tissue deformation. Vis Model Vis 22–24 Teschner M, Girod S, Girod B (2000) Direct computation of nonlinear soft-tissue deformation. Vis Model Vis 22–24
14.
go back to reference Mohammadi H (2009) A numerical method to enhance the accuracy of mass-spring systems for modeling soft tissue deformations. J Appl Biomech 25:271–278CrossRef Mohammadi H (2009) A numerical method to enhance the accuracy of mass-spring systems for modeling soft tissue deformations. J Appl Biomech 25:271–278CrossRef
15.
go back to reference Pourhosseini M, Azimirad V, Kazemi M (2014) A new fast nonlinear modeling of soft tissue for surgical simulation. J Robot Surg 8:141–148CrossRef Pourhosseini M, Azimirad V, Kazemi M (2014) A new fast nonlinear modeling of soft tissue for surgical simulation. J Robot Surg 8:141–148CrossRef
16.
go back to reference Duysak A, Zhang JJ, Ilankovan V (2003) Efficient modelling and simulation of soft tissue deformation using mass-spring systems. Int Congr Ser 1256:337–342CrossRef Duysak A, Zhang JJ, Ilankovan V (2003) Efficient modelling and simulation of soft tissue deformation using mass-spring systems. Int Congr Ser 1256:337–342CrossRef
17.
go back to reference Luo Qi, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Rob 23:416–430CrossRef Luo Qi, Xiao J (2007) Contact and deformation modeling for interactive environments. IEEE Trans Rob 23:416–430CrossRef
18.
go back to reference Cui T, Song A, Wu J (2008) Simulation of a mass-spring model for global deformation. Front Electr Electron Eng China 4:78–82CrossRef Cui T, Song A, Wu J (2008) Simulation of a mass-spring model for global deformation. Front Electr Electron Eng China 4:78–82CrossRef
19.
go back to reference Sulaiman S, Sing Yee T, Bade A (2014) Effect of time complexities and variation of mass spring model parameters on surgical simulation. Malays J Fundam Appl Sci 9:171–179 Sulaiman S, Sing Yee T, Bade A (2014) Effect of time complexities and variation of mass spring model parameters on surgical simulation. Malays J Fundam Appl Sci 9:171–179
20.
go back to reference Chen F, Gu L, Huang P, Zhang J, Xu J (2007) Soft tissue modeling using nonlinear mass spring and simplified medial representation. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp 5083–5086 Chen F, Gu L, Huang P, Zhang J, Xu J (2007) Soft tissue modeling using nonlinear mass spring and simplified medial representation. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp 5083–5086
21.
go back to reference San-Vicente G, Aguinaga I, Celigueta JT (2012) Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans Visual Comput Graph 18:228–241CrossRef San-Vicente G, Aguinaga I, Celigueta JT (2012) Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans Visual Comput Graph 18:228–241CrossRef
22.
go back to reference Shah R, Gupta A (2013) Non-linear cubic spring-mesh model for simulating biological tissues. Bio-Med Eng Sci 51(Supplement):U-12 Shah R, Gupta A (2013) Non-linear cubic spring-mesh model for simulating biological tissues. Bio-Med Eng Sci 51(Supplement):U-12
23.
go back to reference Garg A, Sreeni KG (2013) Haptic rendering of thin and soft objects. ICTACT J Image Video Process 3(3):539–550CrossRef Garg A, Sreeni KG (2013) Haptic rendering of thin and soft objects. ICTACT J Image Video Process 3(3):539–550CrossRef
24.
go back to reference Choi K-S, Sun H, Heng P-A (2004) An efficient and scalable deformable model for virtual reality-based medical applications. Artif Intell Med 32:51–69CrossRef Choi K-S, Sun H, Heng P-A (2004) An efficient and scalable deformable model for virtual reality-based medical applications. Artif Intell Med 32:51–69CrossRef
25.
go back to reference Choi K-S, Sun H, Heng P-A (2003) Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Trans Inf Technol Biomed 7:358–363CrossRef Choi K-S, Sun H, Heng P-A (2003) Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Trans Inf Technol Biomed 7:358–363CrossRef
26.
go back to reference Choi K-S, Sun H, Heng P-A, Zou J (2004) Deformable simulation using force propagation model with finite element optimization. Comput Graph 28:559–568CrossRef Choi K-S, Sun H, Heng P-A, Zou J (2004) Deformable simulation using force propagation model with finite element optimization. Comput Graph 28:559–568CrossRef
27.
go back to reference Mun P, Zhong Y, Shirinzadeh B, Smith J, Gu C (2011) An improved mass-spring model for soft tissue deformation with haptic feedback. ICMT 2011:1–6 Mun P, Zhong Y, Shirinzadeh B, Smith J, Gu C (2011) An improved mass-spring model for soft tissue deformation with haptic feedback. ICMT 2011:1–6
28.
go back to reference Chang Y-H, Chen Y-T, Chang C-W, Lin C-L (2010) Development scheme of haptic-based system for interactive deformable simulation. Comput Aided Des 42:414–424CrossRef Chang Y-H, Chen Y-T, Chang C-W, Lin C-L (2010) Development scheme of haptic-based system for interactive deformable simulation. Comput Aided Des 42:414–424CrossRef
29.
go back to reference Basafa E, Farahmand F, Vossoughi G (2008) A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Stud Health Technol Inf 132(1):23–25 Basafa E, Farahmand F, Vossoughi G (2008) A non-linear mass-spring model for more realistic and efficient simulation of soft tissues surgery. Stud Health Technol Inf 132(1):23–25
30.
go back to reference Nikolaev S (2013) Non-linear mass-spring system for large soft tissue deformations modeling. Sci Tech J Inf Technol Mech Opt 5(87):88–94 Nikolaev S (2013) Non-linear mass-spring system for large soft tissue deformations modeling. Sci Tech J Inf Technol Mech Opt 5(87):88–94
31.
go back to reference Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3:228–238CrossRef Keeve E, Girod S, Kikinis R, Girod B (1998) Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg 3:228–238CrossRef
32.
go back to reference García M, Gómez M, Ruíz Ó, Boulanger P (2005) Spring–particle model for hyperelastic cloth. In: Canadian Congress of Applied Mechanics, CANCAM García M, Gómez M, Ruíz Ó, Boulanger P (2005) Spring–particle model for hyperelastic cloth. In: Canadian Congress of Applied Mechanics, CANCAM
33.
go back to reference Hammer PE, del Nido PJ, Howe RD (2011) Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. Funct Imaging Model Heart 233–240 Hammer PE, del Nido PJ, Howe RD (2011) Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. Funct Imaging Model Heart 233–240
34.
go back to reference Delingette H, Cotin S, Ayache N (1999) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Proc Comput Animation 1999:70–81MATH Delingette H, Cotin S, Ayache N (1999) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. Proc Comput Animation 1999:70–81MATH
35.
go back to reference Picinbono G, Delingette H, Ayache N (2003) Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models 65:305–321CrossRef Picinbono G, Delingette H, Ayache N (2003) Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models 65:305–321CrossRef
36.
go back to reference Liu XP, Xu S, Zhang H, Hu L (2011) A new hybrid soft tissue model for Visio-haptic simulation. IEEE Trans Instrum Meas 60:3570–3581CrossRef Liu XP, Xu S, Zhang H, Hu L (2011) A new hybrid soft tissue model for Visio-haptic simulation. IEEE Trans Instrum Meas 60:3570–3581CrossRef
37.
go back to reference del-Castillo E, Basañez L, Gil E (2013) Modeling non-linear viscoelastic behavior under large deformations. Int J Non-Linear Mech 57:154–162 del-Castillo E, Basañez L, Gil E (2013) Modeling non-linear viscoelastic behavior under large deformations. Int J Non-Linear Mech 57:154–162
38.
go back to reference Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force-displacement data. Int J Sci Res 16:385–389 Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force-displacement data. Int J Sci Res 16:385–389
39.
go back to reference Wang Y, Guo S (2014) Elasticity analysis of mass-spring model-based virtual reality vascular simulator. In: 2014 IEEE international conference on mechatronics and automation, pp 292–297 Wang Y, Guo S (2014) Elasticity analysis of mass-spring model-based virtual reality vascular simulator. In: 2014 IEEE international conference on mechatronics and automation, pp 292–297
40.
go back to reference Duan Y, Huang W, Chang H, Chen W, Zhou J, Teo SK, Su Y, Chui CK, Chang S (2016) Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J Biomed Health Inform 20:268–280CrossRef Duan Y, Huang W, Chang H, Chen W, Zhou J, Teo SK, Su Y, Chui CK, Chang S (2016) Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J Biomed Health Inform 20:268–280CrossRef
41.
go back to reference Maciel A, Boulic R, Thalmann D (2003) Deformable tissue parameterized by properties of real biological tissue. Surg Simul Soft Tissue Model 74–87 Maciel A, Boulic R, Thalmann D (2003) Deformable tissue parameterized by properties of real biological tissue. Surg Simul Soft Tissue Model 74–87
42.
go back to reference Jansson J, Vergeest JSM (2002) A discrete mechanics model for deformable bodies. Comput Aided Des 34:913–928CrossRef Jansson J, Vergeest JSM (2002) A discrete mechanics model for deformable bodies. Comput Aided Des 34:913–928CrossRef
43.
go back to reference Nogami R, Noborio H, Ujibe F, Fujii H (2004) Precise deformation of rheologic object under MSD models with many voxels and calibrating parameters. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04, pp 1919–1926 Nogami R, Noborio H, Ujibe F, Fujii H (2004) Precise deformation of rheologic object under MSD models with many voxels and calibrating parameters. In: IEEE international conference on robotics and automation, 2004. Proceedings. ICRA ’04, pp 1919–1926
44.
go back to reference Morris D, Salisbury K (2008) Automatic preparation, calibration, and simulation of deformable objects. Comput Methods Biomech Biomed Eng 11:263–279CrossRef Morris D, Salisbury K (2008) Automatic preparation, calibration, and simulation of deformable objects. Comput Methods Biomech Biomed Eng 11:263–279CrossRef
45.
go back to reference Zerbato D, Galvan S, Fiorini P (2007) Calibration of mass spring models for organ simulations. In: 2007 IEEE/RSJ international conference on intelligent robots and systems, pp 370–375 Zerbato D, Galvan S, Fiorini P (2007) Calibration of mass spring models for organ simulations. In: 2007 IEEE/RSJ international conference on intelligent robots and systems, pp 370–375
46.
go back to reference Sala A, Turini G, Ferrari M, Mosca F, Ferrari V (2011) Integration of biomechanical parameters in tetrahedral mass-spring models for virtual surgery simulation. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 4550–4554 Sala A, Turini G, Ferrari M, Mosca F, Ferrari V (2011) Integration of biomechanical parameters in tetrahedral mass-spring models for virtual surgery simulation. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 4550–4554
47.
go back to reference Baudet V, Beuve M, Jaillet F, Shariat B, Zara F (2009) Integrating tensile parameters in hexahedral mass-spring system for simulation. In: Proceeding of 29th international conference on computer graphics, visualization, and computer vision (WSCG ’09), pp 145–152 Baudet V, Beuve M, Jaillet F, Shariat B, Zara F (2009) Integrating tensile parameters in hexahedral mass-spring system for simulation. In: Proceeding of 29th international conference on computer graphics, visualization, and computer vision (WSCG ’09), pp 145–152
48.
go back to reference Gelder AV (1998) Approximate simulation of elastic membranes by triangulated spring meshes. J Graph Tools 3:21–41CrossRef Gelder AV (1998) Approximate simulation of elastic membranes by triangulated spring meshes. J Graph Tools 3:21–41CrossRef
49.
go back to reference Lloyd B, Szekely G, Harders M (2007) Identification of spring parameters for deformable object simulation. IEEE Trans Visual Comput Graph 13:1081–1094CrossRef Lloyd B, Szekely G, Harders M (2007) Identification of spring parameters for deformable object simulation. IEEE Trans Visual Comput Graph 13:1081–1094CrossRef
50.
go back to reference Delingette H (2008) Triangular springs for modeling nonlinear membranes. IEEE Trans Visual Comput Graph 14:329–341CrossRef Delingette H (2008) Triangular springs for modeling nonlinear membranes. IEEE Trans Visual Comput Graph 14:329–341CrossRef
51.
go back to reference Deussen O, Kobbelt L, Tücke P (1995) Using simulated annealing to obtain good nodal approximations of deformable bodies. Eurographics 30–43 Deussen O, Kobbelt L, Tücke P (1995) Using simulated annealing to obtain good nodal approximations of deformable bodies. Eurographics 30–43
52.
go back to reference Louchet J, Provot X, Crochemore D (1995) Evolutionary identification of cloth animation models. Eurographics 44–54 Louchet J, Provot X, Crochemore D (1995) Evolutionary identification of cloth animation models. Eurographics 44–54
53.
go back to reference Joukhadar A, Garat F, Laugier C (1997) Parameter identification for dynamic simulation. Proc Int Conf Robot Autom 1928–1933 Joukhadar A, Garat F, Laugier C (1997) Parameter identification for dynamic simulation. Proc Int Conf Robot Autom 1928–1933
54.
go back to reference Etzmuss O, Gross J, Strasser W (2003) Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans Visual Comput Graph 9:538–550CrossRef Etzmuss O, Gross J, Strasser W (2003) Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans Visual Comput Graph 9:538–550CrossRef
55.
go back to reference Bianchi G, Solenthaler B, Székely G, Harders M (2004) Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations. Med Image Comput Comput-Assist Interv MICCAI 2004, pp 293–301 Bianchi G, Solenthaler B, Székely G, Harders M (2004) Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations. Med Image Comput Comput-Assist Interv MICCAI 2004, pp 293–301
56.
go back to reference Mosegaard J (2003) Parameter optimisation for the behaviour of elastic models over time. Stud Health Technol Inform 98:253–255 Mosegaard J (2003) Parameter optimisation for the behaviour of elastic models over time. Stud Health Technol Inform 98:253–255
57.
go back to reference Qiao B, Chen G, Ye X (2009) The research of soft tissue deformation based on mass-spring model. In: 2009 international conference on mechatronics and automation, pp 4655–4660 Qiao B, Chen G, Ye X (2009) The research of soft tissue deformation based on mass-spring model. In: 2009 international conference on mechatronics and automation, pp 4655–4660
58.
go back to reference Zhu L, Ye X, Ji’er X, Gu Y, Guo S (2010) A real-time deformation modeling scheme of soft tissue for virtual surgical. In: 2010 ieee international conference on information and automation, pp 771–775 Zhu L, Ye X, Ji’er X, Gu Y, Guo S (2010) A real-time deformation modeling scheme of soft tissue for virtual surgical. In: 2010 ieee international conference on information and automation, pp 771–775
59.
go back to reference Georgii J, Westermann R (2005) Mass-spring systems on the GPU. Simul Model Pract Theor 13:693–702CrossRef Georgii J, Westermann R (2005) Mass-spring systems on the GPU. Simul Model Pract Theor 13:693–702CrossRef
60.
go back to reference Leon CA, Eliuk S, Gomez HT (2010) Simulating soft tissues using a GPU approach of the mass-spring model. 2010 IEEE Virtual Reality Conf (VR) 261–262 Leon CA, Eliuk S, Gomez HT (2010) Simulating soft tissues using a GPU approach of the mass-spring model. 2010 IEEE Virtual Reality Conf (VR) 261–262
61.
go back to reference Vassilev T, Rousev R (2008) Algorithm and data structures for implementing a mass-spring deformable model on GPU. Res Lab Univ Ruse, pp 102–109 Vassilev T, Rousev R (2008) Algorithm and data structures for implementing a mass-spring deformable model on GPU. Res Lab Univ Ruse, pp 102–109
62.
go back to reference Rasmusson A, Mosegaard J, S∅rensen TS. Exploring parallel algorithms for volumetric mass-spring-damper models in CUDA. Biomed Simul 49–58 Rasmusson A, Mosegaard J, S∅rensen TS. Exploring parallel algorithms for volumetric mass-spring-damper models in CUDA. Biomed Simul 49–58
63.
go back to reference Etheredge CE (2011) A parallel mass-spring model for soft tissue simulation with haptic rendering in CUDA. In: 15th Twente student conference on IT Etheredge CE (2011) A parallel mass-spring model for soft tissue simulation with haptic rendering in CUDA. In: 15th Twente student conference on IT
64.
go back to reference Fung YC (2011) Biomechanics: mechanical properties of living tissues. Springer, New York Fung YC (2011) Biomechanics: mechanical properties of living tissues. Springer, New York
65.
go back to reference Holzapfel GA (2001) Biomechanics of soft tissue. Handbook Mater Behav Models 3:1049–1063 Holzapfel GA (2001) Biomechanics of soft tissue. Handbook Mater Behav Models 3:1049–1063
Metadata
Title
A Review of Mass Spring Method Improvements for Modeling Soft Tissue Deformation
Authors
Mohd Nadzeri Omar
Yongmin Zhong
Copyright Year
2022
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-4115-2_16