Skip to main content
Top

2024 | OriginalPaper | Chapter

A Review on Neural Amplifier Design for Brain–Machine Interface

Authors : Sourav Nath, Koushik Guha, Krishna Lal Baishnab

Published in: Micro and Nanoelectronics Devices, Circuits and Systems

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Brain–machine interface (BMI)-based neural signal recording is a new approach that is frequently used to track brain activity. Neural signals are recorded using microelectrode implanted in the brain. The collected signal from the electrode has a low amplitude and a high noise level. It requires a high-performance neural amplifier system that has highly immune to noise and with high gain for recording neural local field potential (LFP) and action potential (AP) signals. Integrated circuit (IC) technology can be used to develop and construct neural amplifier-based systems internally, leading to ultra-large-scale integration (ULSI) or application-specific integrated circuit (ASIC) solutions. Due to its small form factor and lightweight with low power consumption, the IC-based neural amplifiers are now deployed in portable easy to carry neural recording system. In this paper, the review will focus on various neural amplifiers design topology and operational transconductance amplifier (OTA) architecture and their pros and cons based on their performance in terms of noise efficiency and power consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
9.
go back to reference D.J. Chew, L. Zhu, E. Delivopoulos, I.R. Minev, K.M. Musick, C.A. Mosse, M. Craggs, N. Donaldson, S.P. Lacour, S.B. McMahon, J.W. Fawcett, A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5(210), 210ra155 (2013). https://doi.org/10.1126/scitranslmed.3007186. PMID:24197736 D.J. Chew, L. Zhu, E. Delivopoulos, I.R. Minev, K.M. Musick, C.A. Mosse, M. Craggs, N. Donaldson, S.P. Lacour, S.B. McMahon, J.W. Fawcett, A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5(210), 210ra155 (2013). https://​doi.​org/​10.​1126/​scitranslmed.​3007186. PMID:24197736
11.
go back to reference J.G. Webster (ed.), Medical Instrumentation: Application and Design (Wiley, New york, 1998) J.G. Webster (ed.), Medical Instrumentation: Application and Design (Wiley, New york, 1998)
12.
go back to reference H. Yoo, C. Hoof, Biomedical CMOS ICs, 1st edn. (2011) H. Yoo, C. Hoof, Biomedical CMOS ICs, 1st edn. (2011)
17.
go back to reference M. Dorman, M. Prisbe, J. Meindl, A monolithic signal processor for a neurophysiological telemetry system. IEEE J Solid State Circuits. 20(6), 1185–1193 (1985)CrossRef M. Dorman, M. Prisbe, J. Meindl, A monolithic signal processor for a neurophysiological telemetry system. IEEE J Solid State Circuits. 20(6), 1185–1193 (1985)CrossRef
18.
go back to reference R.W. Keyes, Moore’s law today. IEEE Circuits Syst Mag. 8(2), 53–54 (2008)CrossRef R.W. Keyes, Moore’s law today. IEEE Circuits Syst Mag. 8(2), 53–54 (2008)CrossRef
20.
go back to reference D.H. Hubel, Tungsten microelectrode for recording from single units. Science 125, 549–550 (1957)CrossRef D.H. Hubel, Tungsten microelectrode for recording from single units. Science 125, 549–550 (1957)CrossRef
21.
go back to reference M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3, 388–397 (2009)CrossRef M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3, 388–397 (2009)CrossRef
22.
go back to reference R.Q. Quiroga, S. Panzeri, Extracting information from neuronal populations: Information theory and decoding approaches. Nat. Rev. Neurosci. 10, 173 (2009)CrossRef R.Q. Quiroga, S. Panzeri, Extracting information from neuronal populations: Information theory and decoding approaches. Nat. Rev. Neurosci. 10, 173 (2009)CrossRef
23.
go back to reference P.G. Patil, D.A. Turner, The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5, 137–146 (2008)CrossRef P.G. Patil, D.A. Turner, The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics 5, 137–146 (2008)CrossRef
24.
go back to reference J.R. White, T. Levy, W. Bishop, J.D. Beaty, Real-time decision fusion for multimodal neural prosthetic devices. PLoS ONE 5, e9493 (2010)CrossRef J.R. White, T. Levy, W. Bishop, J.D. Beaty, Real-time decision fusion for multimodal neural prosthetic devices. PLoS ONE 5, e9493 (2010)CrossRef
25.
go back to reference G. Buzsáki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446 (2004)CrossRef G. Buzsáki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446 (2004)CrossRef
26.
go back to reference G. Gerstein, W. Clark, Simultaneous studies of firing patterns in several neurons. Science 143, 1325–1327 (1964)CrossRef G. Gerstein, W. Clark, Simultaneous studies of firing patterns in several neurons. Science 143, 1325–1327 (1964)CrossRef
27.
go back to reference A.M. Sodagar, K.D. Wise, K. Najafi, A wireless implantable microsystem for multichannel neural recording. IEEE Trans. Microw. Theory Tech. 57, 2565–2573 (2009)CrossRef A.M. Sodagar, K.D. Wise, K. Najafi, A wireless implantable microsystem for multichannel neural recording. IEEE Trans. Microw. Theory Tech. 57, 2565–2573 (2009)CrossRef
28.
go back to reference B. Gosselin, A.E. Ayoub, J.F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3, 129–141 (2009)CrossRef B. Gosselin, A.E. Ayoub, J.F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans. Biomed. Circuits Syst. 3, 129–141 (2009)CrossRef
30.
go back to reference S.B. Lee, H.M. Lee, M. Kiani, U.M. Jow, M. Ghovanloo, An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4, 360–371 (2010)CrossRef S.B. Lee, H.M. Lee, M. Kiani, U.M. Jow, M. Ghovanloo, An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4, 360–371 (2010)CrossRef
31.
go back to reference R. Sarpeshkar, W. Wattanapanitch, S.K. Arfin, B.I. Rapoport, S. Mandal, M.W. Baker, M.S. Fee, S. Musallam, R.A. Andersen, Low-power circuits for brain-machine interfaces. IEEE Trans. Biomed. Circuits Syst. 2(3), 173–183 (2008)CrossRef R. Sarpeshkar, W. Wattanapanitch, S.K. Arfin, B.I. Rapoport, S. Mandal, M.W. Baker, M.S. Fee, S. Musallam, R.A. Andersen, Low-power circuits for brain-machine interfaces. IEEE Trans. Biomed. Circuits Syst. 2(3), 173–183 (2008)CrossRef
32.
go back to reference D. Khudair, S. Nahavandi, H. Garmestani, A. Bhatti, Microelectrode Arrays: architecture, challenges and engineering solutions, in Emerging Trends in Neuro Engineering and Neural Computation, Series in BioEngineering (Springer, Singapore, 2017) D. Khudair, S. Nahavandi, H. Garmestani, A. Bhatti, Microelectrode Arrays: architecture, challenges and engineering solutions, in Emerging Trends in Neuro Engineering and Neural Computation, Series in BioEngineering (Springer, Singapore, 2017)
33.
go back to reference W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)CrossRef W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)CrossRef
34.
go back to reference R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRef R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)CrossRef
35.
go back to reference P. Mohseni, K. Najafi, A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans. Biomed. Eng. 51(5), 832–837 (2004)CrossRef P. Mohseni, K. Najafi, A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans. Biomed. Eng. 51(5), 832–837 (2004)CrossRef
37.
go back to reference V. Chaturvedi, B. Amrutur, An area-efficient noise-adaptive neural amplifier in 130 nm CMOS technology. IEEE Journal on emerging and selected topics in circuits and systems 1(4), 536–545 (2011)CrossRef V. Chaturvedi, B. Amrutur, An area-efficient noise-adaptive neural amplifier in 130 nm CMOS technology. IEEE Journal on emerging and selected topics in circuits and systems 1(4), 536–545 (2011)CrossRef
38.
go back to reference J.R. Amaya, A.R. Perez, M.D. Restituto, A low noise amplifier for neural spike recording interfaces. Sensors 15(10), 25313–25335 (2015)CrossRef J.R. Amaya, A.R. Perez, M.D. Restituto, A low noise amplifier for neural spike recording interfaces. Sensors 15(10), 25313–25335 (2015)CrossRef
39.
go back to reference V. Majidzadeh, A. Schmid, Y. Leblebici, Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)CrossRef V. Majidzadeh, A. Schmid, Y. Leblebici, Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)CrossRef
40.
go back to reference F. Zhang, J. Holleman, B.P. Otis, Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 6(4), 344–355 (2012)CrossRef F. Zhang, J. Holleman, B.P. Otis, Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 6(4), 344–355 (2012)CrossRef
41.
go back to reference R. Muller, S. Gambini, J.M. Rabaey, A 0.013 mm2, 5 μW, dccoupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid- State Circuits 47(1), 232–243 (2013)CrossRef R. Muller, S. Gambini, J.M. Rabaey, A 0.013 mm2, 5 μW, dccoupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid- State Circuits 47(1), 232–243 (2013)CrossRef
42.
go back to reference E. Bharucha, H. Sepehrian, B. Gosselin, A survey of neural front-end amplifiers and their requirements toward practical neural interfaces. Journal of Low Power Electronics and Applications 4(4), 268–291 (2014)CrossRef E. Bharucha, H. Sepehrian, B. Gosselin, A survey of neural front-end amplifiers and their requirements toward practical neural interfaces. Journal of Low Power Electronics and Applications 4(4), 268–291 (2014)CrossRef
43.
go back to reference C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G. Gielen, An implantable 455-Active-Electrode 52-channel CMOS neural probe, in Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’13), San Francisco, CA, USA, 17–21 February 2013, p. 289 C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G. Gielen, An implantable 455-Active-Electrode 52-channel CMOS neural probe, in Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’13), San Francisco, CA, USA, 17–21 February 2013, p. 289
44.
go back to reference S. Dwivedi, A.K. Gogoi, A 0.8 V CMOS OTA and its application in realizing a neural recording amplifier. J. Med. Bioeng. 4(3) S. Dwivedi, A.K. Gogoi, A 0.8 V CMOS OTA and its application in realizing a neural recording amplifier. J. Med. Bioeng. 4(3)
45.
go back to reference Y. Feng, W. Zhigong, L. Xiaoying, A multi-channel analog IC for in vitro neural recording. J. Semicond. 37(2), 025007:1–7 (2016) Y. Feng, W. Zhigong, L. Xiaoying, A multi-channel analog IC for in vitro neural recording. J. Semicond. 37(2), 025007:1–7 (2016)
46.
go back to reference K.A. Ng, E. Greenwald, Y.P. Xu, N.V. Thakor, Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med. Biol. Eng. Compu. 54(1), 45–62 (2016)CrossRef K.A. Ng, E. Greenwald, Y.P. Xu, N.V. Thakor, Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med. Biol. Eng. Compu. 54(1), 45–62 (2016)CrossRef
47.
go back to reference K.A. Ng, Y.P. Xu, A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J. Solid-State Circuits 51(3), 724–737 (2016)CrossRef K.A. Ng, Y.P. Xu, A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J. Solid-State Circuits 51(3), 724–737 (2016)CrossRef
48.
go back to reference G. Deepika, K.S. Rao, A low power, low noise amplifier for recording neural signals. IAES Int. J. Artif. Intell. (IJAI) 6(1), 18–25 (2017) G. Deepika, K.S. Rao, A low power, low noise amplifier for recording neural signals. IAES Int. J. Artif. Intell. (IJAI) 6(1), 18–25 (2017)
49.
go back to reference S. Kim, S.I. Na, Y. Yang, H. Kim, T. Kim, J.S. Cho, S. Kim, A 4× 32-channel neural recording system for deep brain stimulation systems. J. Semicond. Technol. Sci. 17(1), 129–140 (2017)CrossRef S. Kim, S.I. Na, Y. Yang, H. Kim, T. Kim, J.S. Cho, S. Kim, A 4× 32-channel neural recording system for deep brain stimulation systems. J. Semicond. Technol. Sci. 17(1), 129–140 (2017)CrossRef
51.
go back to reference S.Y. Park, J. Cho, K. Lee, E. Yoon, Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE J. Solid State Circuits 53, 1102–1114 (2018)CrossRef S.Y. Park, J. Cho, K. Lee, E. Yoon, Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE J. Solid State Circuits 53, 1102–1114 (2018)CrossRef
52.
go back to reference H. Chandrakumar, D. Markovic, A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid State Circuits 52(3), 645–656 (2017)CrossRef H. Chandrakumar, D. Markovic, A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid State Circuits 52(3), 645–656 (2017)CrossRef
53.
go back to reference D. Luo, M. Zhang, Z. Wang, Design of a low noise neural recording amplifier for closed-loop neuromodulation application, in IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, May, 2018 D. Luo, M. Zhang, Z. Wang, Design of a low noise neural recording amplifier for closed-loop neuromodulation application, in IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, May, 2018
54.
go back to reference L. Shen, N. Lu, N. Sun, A 1-V 0.25-µW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits 53(3), 896–905 (2018)CrossRef L. Shen, N. Lu, N. Sun, A 1-V 0.25-µW inverter stacking amplifier with 1.07 noise efficiency factor. IEEE J Solid State Circuits 53(3), 896–905 (2018)CrossRef
55.
go back to reference H.S. Kim, H.K. Cha, A low-noise biopotential CMOS amplifier IC using low-power two-stage OTA for neural recording application. J. Circuits Syst. Comput. 27(5), 1850068–1850075 (2108) (World Scientific Journals) H.S. Kim, H.K. Cha, A low-noise biopotential CMOS amplifier IC using low-power two-stage OTA for neural recording application. J. Circuits Syst. Comput. 27(5), 1850068–1850075 (2108) (World Scientific Journals)
56.
go back to reference H.S. Kim, H.K. Cha, An ultra low-power low-noise neural recording analog front-end IC for implantable devices. J. Semicond. Technol. Sci. 18(4) (2018) H.S. Kim, H.K. Cha, An ultra low-power low-noise neural recording analog front-end IC for implantable devices. J. Semicond. Technol. Sci. 18(4) (2018)
57.
go back to reference G.E. Perlin, A. Sodagar, K.D. Wise, A neural amplifier with high programmable gain and tunable bandwidth, in 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, 20–24 Aug. 2008 G.E. Perlin, A. Sodagar, K.D. Wise, A neural amplifier with high programmable gain and tunable bandwidth, in 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, 20–24 Aug. 2008
58.
go back to reference K. Ashmouny, S. Chang, E. Yoon, A 8.6 μW 3-bit programmable gain amplifier for multiplexed-input neural recording systems, in 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, 30 Aug–3 Sept 2011 K. Ashmouny, S. Chang, E. Yoon, A 8.6 μW 3-bit programmable gain amplifier for multiplexed-input neural recording systems, in 33rd Annual International Conference of the IEEE EMBS Boston, Massachusetts USA, 30 Aug–3 Sept 2011
59.
go back to reference H.R. Dehsork, N. Ravanshad, R. Lotfi, K. Mafinezhad, A.M. Sodagar, Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE J. Emerging Sel. Top. Circuits Syst. 1(4), 546–556 (2011)CrossRef H.R. Dehsork, N. Ravanshad, R. Lotfi, K. Mafinezhad, A.M. Sodagar, Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE J. Emerging Sel. Top. Circuits Syst. 1(4), 546–556 (2011)CrossRef
60.
go back to reference H.M. Aliabad, M.M. Nejad, E. Shadkami, N. Khorashahian, M. Mianji, Design of an ECG signals amplifier with programmable gain and bandwidth based on a new method in pseudo-resistor circuits. Bull. Env. Pharmacol. Life Sci. 4(1), 131–141 (2015) H.M. Aliabad, M.M. Nejad, E. Shadkami, N. Khorashahian, M. Mianji, Design of an ECG signals amplifier with programmable gain and bandwidth based on a new method in pseudo-resistor circuits. Bull. Env. Pharmacol. Life Sci. 4(1), 131–141 (2015)
Metadata
Title
A Review on Neural Amplifier Design for Brain–Machine Interface
Authors
Sourav Nath
Koushik Guha
Krishna Lal Baishnab
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-4495-8_28