Skip to main content
Top

2023 | OriginalPaper | Chapter

A Review on Technological Advancements in the Field of Data Driven Structural Health Monitoring

Authors : Rakesh Katam, Prafulla Kalapatapu, Venkata Dilip Kumar Pasupuleti

Published in: European Workshop on Structural Health Monitoring

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent advancements in sensor technology, as well as fast progress in internet-based cloud computation; data-driven approaches in structural health monitoring (SHM) are gaining prominence. The majority of time is utilized for reviewing & analyzing the data received from various sensors deployed in structures. This data analysis helps in understating the structural stability and its current state with certain limitations. Considering this fact, integration with Machine Learning (ML) in SHM has attracted significant attention among researchers. This paper is principally aimed at understanding and reviewing of vast literature available in sensor-based data-driven approaches using ML. The implementation and methodology of vibration-based, vision-based monitoring, along with some of the ML algorithms used for SHM are discussed. Nevertheless, a perspective on the importance of data-driven SHM in the future is also presented. Conclusions are drawn from the review discuss the prospects and potential limitations of ML approaches in data-driven SHM applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 365(1851), 303–315 (2007)CrossRef Farrar, C.R., Worden, K.: An introduction to structural health monitoring. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 365(1851), 303–315 (2007)CrossRef
2.
go back to reference Sohn, H., et al.: A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA (2003) Sohn, H., et al.: A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA (2003)
3.
go back to reference Olanitori, L.M.: Causes of structural failures of a building: case study of a building at Oba-Ile, Akure. J. Build. Appraisal 6(3), 277–284 (2011)CrossRef Olanitori, L.M.: Causes of structural failures of a building: case study of a building at Oba-Ile, Akure. J. Build. Appraisal 6(3), 277–284 (2011)CrossRef
4.
go back to reference Wardhana, K., Hadipriono, F.C.: Study of recent building failures in the United States. J. Perform. Constr. Facil. 17(3), 151–158 (2003)CrossRef Wardhana, K., Hadipriono, F.C.: Study of recent building failures in the United States. J. Perform. Constr. Facil. 17(3), 151–158 (2003)CrossRef
5.
go back to reference Garg, R.K., Chandra, S., Kumar, A.: Analysis of bridge failures in India from 1977 to 2017. Struct. Infrastruct. Eng. 18(3), 295–312 (2022)CrossRef Garg, R.K., Chandra, S., Kumar, A.: Analysis of bridge failures in India from 1977 to 2017. Struct. Infrastruct. Eng. 18(3), 295–312 (2022)CrossRef
6.
go back to reference Chatterjee, P.: Urban building collapse: what are the health implications? BMJ 349 (2014) Chatterjee, P.: Urban building collapse: what are the health implications? BMJ 349 (2014)
7.
go back to reference Rosales, M.J., Liyanapathirana, R.: Data driven innovations in structural health monitoring. In: Journal of Physics: Conference Series, vol. 842, no. 1, p. 012012. IOP Publishing (2017) Rosales, M.J., Liyanapathirana, R.: Data driven innovations in structural health monitoring. In: Journal of Physics: Conference Series, vol. 842, no. 1, p. 012012. IOP Publishing (2017)
8.
go back to reference Luckey, D., Fritz, H., Legatiuk, D., Peralta Abadía, J.J., Walther, C., Smarsly, K.: Explainable artificial intelligence to advance structural health monitoring. In: Cury, A., Ribeiro, D., Ubertini, F., Todd, M.D. (eds.) Structural Health Monitoring Based on Data Science Techniques. SI, vol. 21, pp. 331–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-81716-9_16CrossRef Luckey, D., Fritz, H., Legatiuk, D., Peralta Abadía, J.J., Walther, C., Smarsly, K.: Explainable artificial intelligence to advance structural health monitoring. In: Cury, A., Ribeiro, D., Ubertini, F., Todd, M.D. (eds.) Structural Health Monitoring Based on Data Science Techniques. SI, vol. 21, pp. 331–346. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-030-81716-9_​16CrossRef
9.
go back to reference Azimi, M., Eslamlou, A.D., Pekcan, G.: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 20(10), 2778 (2020)CrossRef Azimi, M., Eslamlou, A.D., Pekcan, G.: Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 20(10), 2778 (2020)CrossRef
10.
go back to reference Tibaduiza, D., Torres-Arredondo, M.Á., Vitola, J., Anaya, M., Pozo, F.: A damage classification approach for structural health monitoring using machine learning. Complexity (2018) Tibaduiza, D., Torres-Arredondo, M.Á., Vitola, J., Anaya, M., Pozo, F.: A damage classification approach for structural health monitoring using machine learning. Complexity (2018)
11.
go back to reference Wang, Y., Zhao, Y., Addepalli, S.: Remaining useful life prediction using deep learning approaches: a review. Proc. Manuf. 49, 81–88 (2020) Wang, Y., Zhao, Y., Addepalli, S.: Remaining useful life prediction using deep learning approaches: a review. Proc. Manuf. 49, 81–88 (2020)
12.
go back to reference Cardoso, R., Cury, A., Barbosa, F.: A robust methodology for modal parameters estimation applied to SHM. Mech. Syst. Signal Process. 95, 24–41 (2017)CrossRef Cardoso, R., Cury, A., Barbosa, F.: A robust methodology for modal parameters estimation applied to SHM. Mech. Syst. Signal Process. 95, 24–41 (2017)CrossRef
13.
go back to reference Deraemaeker, A., Reynders, E., De Roeck, G., Kullaa, J.: Vibration based SHM: comparison of the performance of modal features vs features extracted from spatial filters under changing environmental conditions. In: ISMA2006 International Conference on Noise and Vibration Engineering, pp. 849–864 (2006) Deraemaeker, A., Reynders, E., De Roeck, G., Kullaa, J.: Vibration based SHM: comparison of the performance of modal features vs features extracted from spatial filters under changing environmental conditions. In: ISMA2006 International Conference on Noise and Vibration Engineering, pp. 849–864 (2006)
14.
go back to reference Kamariotis, A., Chatzi, E., Straub, D.: A framework for quantifying the value of vibration-based structural health monitoring. arXiv preprint arXiv:2202.01859 (2022) Kamariotis, A., Chatzi, E., Straub, D.: A framework for quantifying the value of vibration-based structural health monitoring. arXiv preprint arXiv:​2202.​01859 (2022)
16.
go back to reference Huang, Q., Gardoni, P., Hurlebaus, S.: A probabilistic damage detection approach using vibration-based nondestructive testing. Struct. Saf. 38, 11–21 (2012)CrossRef Huang, Q., Gardoni, P., Hurlebaus, S.: A probabilistic damage detection approach using vibration-based nondestructive testing. Struct. Saf. 38, 11–21 (2012)CrossRef
17.
go back to reference Yan, Y.J., Cheng, L., Wu, Z.Y., Yam, L.H.: Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21(5), 2198–2211 (2007)CrossRef Yan, Y.J., Cheng, L., Wu, Z.Y., Yam, L.H.: Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 21(5), 2198–2211 (2007)CrossRef
18.
go back to reference Borate, P., Wang, G., Wang, Y.: Data-driven structural health monitoring approach using guided Lamb wave responses. J. Aerosp. Eng. 33(4), 04020033 (2020)CrossRef Borate, P., Wang, G., Wang, Y.: Data-driven structural health monitoring approach using guided Lamb wave responses. J. Aerosp. Eng. 33(4), 04020033 (2020)CrossRef
19.
go back to reference Muin, S., Mosalam, K.M.: Structural health monitoring using machine learning and cumulative absolute velocity features. Appl. Sci. 11(12), 5727 (2021)CrossRef Muin, S., Mosalam, K.M.: Structural health monitoring using machine learning and cumulative absolute velocity features. Appl. Sci. 11(12), 5727 (2021)CrossRef
20.
go back to reference Maes, K., Van Meerbeeck, L., Reynders, E.P.B., Lombaert, G.: Validation of vibration-based structural health monitoring on retrofitted railway bridge KW51. Mech. Syst. Signal Process. 165, 108380 (2022)CrossRef Maes, K., Van Meerbeeck, L., Reynders, E.P.B., Lombaert, G.: Validation of vibration-based structural health monitoring on retrofitted railway bridge KW51. Mech. Syst. Signal Process. 165, 108380 (2022)CrossRef
21.
go back to reference Zhang, Y., Miyamori, Y., Mikami, S., Saito, T.: Vibration-based structural state identification by a 1-dimensional convolutional neural network. Comput.-Aided Civ. Infrastr. Eng. 34(9), 822–839 (2019)CrossRef Zhang, Y., Miyamori, Y., Mikami, S., Saito, T.: Vibration-based structural state identification by a 1-dimensional convolutional neural network. Comput.-Aided Civ. Infrastr. Eng. 34(9), 822–839 (2019)CrossRef
22.
go back to reference Ghiasi, R., Torkzadeh, P., Noori, M.: A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Struct. Health Monit. 15(3), 302–316 (2016)CrossRef Ghiasi, R., Torkzadeh, P., Noori, M.: A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Struct. Health Monit. 15(3), 302–316 (2016)CrossRef
23.
go back to reference Rafiei, M.H., Adeli, H.: A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Design Tall Spec. Build. 26(18), e1400 (2017)CrossRef Rafiei, M.H., Adeli, H.: A novel machine learning-based algorithm to detect damage in high-rise building structures. Struct. Design Tall Spec. Build. 26(18), e1400 (2017)CrossRef
24.
go back to reference Li, S., Sun, L.: Detectability of bridge-structural damage based on fiber-optic sensing through deep-convolutional neural networks. J. Bridg. Eng. 25(4), 04020012 (2020)MathSciNetCrossRef Li, S., Sun, L.: Detectability of bridge-structural damage based on fiber-optic sensing through deep-convolutional neural networks. J. Bridg. Eng. 25(4), 04020012 (2020)MathSciNetCrossRef
25.
go back to reference Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W., Ni, P.: Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 172, 13–28 (2018)CrossRef Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W., Ni, P.: Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 172, 13–28 (2018)CrossRef
26.
go back to reference Lin, Y.Z., Nie, Z.H., Ma, H.W.: Structural damage detection with automatic feature-extraction through deep learning. Comput.-Aided Civ. Infrastr. Eng. 32(12), 1025–1046 (2017)CrossRef Lin, Y.Z., Nie, Z.H., Ma, H.W.: Structural damage detection with automatic feature-extraction through deep learning. Comput.-Aided Civ. Infrastr. Eng. 32(12), 1025–1046 (2017)CrossRef
27.
go back to reference Yu, Y., Wang, C., Gu, X., Li, J.: A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 18(1), 143–163 (2019)CrossRef Yu, Y., Wang, C., Gu, X., Li, J.: A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 18(1), 143–163 (2019)CrossRef
28.
go back to reference Ye, X.W., Dong, C.Z., Liu, T.: A review of machine vision-based structural health monitoring: methodologies and applications. J. Sens. (2016) Ye, X.W., Dong, C.Z., Liu, T.: A review of machine vision-based structural health monitoring: methodologies and applications. J. Sens. (2016)
29.
go back to reference Kot, P., Muradov, M., Gkantou, M., Kamaris, G.S., Hashim, K., Yeboah, D.: Recent advancements in non-destructive testing techniques for structural health monitoring. Appl. Sci. 11(6), 2750 (2021)CrossRef Kot, P., Muradov, M., Gkantou, M., Kamaris, G.S., Hashim, K., Yeboah, D.: Recent advancements in non-destructive testing techniques for structural health monitoring. Appl. Sci. 11(6), 2750 (2021)CrossRef
31.
32.
go back to reference Mishra, M.: Machine learning techniques for structural health monitoring of heritage buildings: a state-of-the-art review and case studies. J. Cult. Herit. 47, 227–245 (2021)CrossRef Mishra, M.: Machine learning techniques for structural health monitoring of heritage buildings: a state-of-the-art review and case studies. J. Cult. Herit. 47, 227–245 (2021)CrossRef
34.
35.
go back to reference Hoła, J., Schabowicz, K.: New technique of nondestructive assessment of concrete strength using artificial intelligence. NDT E Int. 38(4), 251–259 (2005)CrossRef Hoła, J., Schabowicz, K.: New technique of nondestructive assessment of concrete strength using artificial intelligence. NDT E Int. 38(4), 251–259 (2005)CrossRef
36.
go back to reference Kewalramani, M.A., Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006)CrossRef Kewalramani, M.A., Gupta, R.: Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 15(3), 374–379 (2006)CrossRef
37.
go back to reference Cho, Y.S., Hong, S.U., Lee, M.S.: The assessment of the compressive strength and thickness of concrete structures using nondestructive testing and an artificial neural network. Nondestruct. Test. Eval. 24(3), 277–288 (2009)CrossRef Cho, Y.S., Hong, S.U., Lee, M.S.: The assessment of the compressive strength and thickness of concrete structures using nondestructive testing and an artificial neural network. Nondestruct. Test. Eval. 24(3), 277–288 (2009)CrossRef
38.
go back to reference Beckman, G.H., Polyzois, D., Cha, Y.J.: Deep learning-based automatic volumetric damage quantification using depth camera. Autom. Constr. 99, 114–124 (2019)CrossRef Beckman, G.H., Polyzois, D., Cha, Y.J.: Deep learning-based automatic volumetric damage quantification using depth camera. Autom. Constr. 99, 114–124 (2019)CrossRef
39.
go back to reference Jang, K., Kim, N., An, Y.K.: Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Struct. Health Monit. 18(5–6), 1722–1737 (2019)CrossRef Jang, K., Kim, N., An, Y.K.: Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Struct. Health Monit. 18(5–6), 1722–1737 (2019)CrossRef
40.
go back to reference Ni, F., Zhang, J., Chen, Z.: Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning. Comput.-Aided Civ. Infrastr. Eng. 34(5), 367–384 (2019)CrossRef Ni, F., Zhang, J., Chen, Z.: Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning. Comput.-Aided Civ. Infrastr. Eng. 34(5), 367–384 (2019)CrossRef
41.
go back to reference Huynh, A.T., et al.: A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 10(21), 7726 (2020)CrossRef Huynh, A.T., et al.: A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl. Sci. 10(21), 7726 (2020)CrossRef
42.
go back to reference Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B.F., Fujino, Y.: Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts. Mech. Syst. Signal Process. 160, 107850 (2021)CrossRef Narazaki, Y., Hoskere, V., Yoshida, K., Spencer, B.F., Fujino, Y.: Synthetic environments for vision-based structural condition assessment of Japanese high-speed railway viaducts. Mech. Syst. Signal Process. 160, 107850 (2021)CrossRef
43.
go back to reference Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P., Lourenço, P.B.: Soft computing techniques for the prediction of concrete compressive strength using non-destructive tests. Constr. Build. Mater. 303, 124450 (2021)CrossRef Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P., Lourenço, P.B.: Soft computing techniques for the prediction of concrete compressive strength using non-destructive tests. Constr. Build. Mater. 303, 124450 (2021)CrossRef
Metadata
Title
A Review on Technological Advancements in the Field of Data Driven Structural Health Monitoring
Authors
Rakesh Katam
Prafulla Kalapatapu
Venkata Dilip Kumar Pasupuleti
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-07322-9_38