Skip to main content
Top

2023 | OriginalPaper | Chapter

Physical Covariance Functions for Dynamic Systems with Time-Dependent Parameters

Authors : Matthew R. Jones, Timothy J. Rogers, Elizabeth J. Cross

Published in: European Workshop on Structural Health Monitoring

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As monitoring data becomes increasingly available, it is natural for structural health monitoring practitioners to turn towards data-driven models. Despite the expressive capability and flexibility of such models, their predictive performance relies on access to suitably represenative training data, which in structural health monitoring, equates to data that span the full environmental and operational envelope of the structure. Additionally, given the black-box nature of such models, there is no guarantee that predictions will adhere to fundamental physical principles. In an attempt to address these limitations, recent attention has been directed towards models that seek to combine physical insight with traditional machine learning techniques, referred to generally as physics-informed machine learning or grey-box modelling. In this paper, we seek to incorporate physical insight into a Gaussian process through the use of covariance functions that explicitly capture the evolution of dynamic systems in time. Specifically, within an autoregressive setting, we begin by deriving the covariance for the approximate response of a single degree of freedom system. Consideration is then given to how such kernels may be used when the governing parameters in the equations of motion vary over time, which is investigated here through a varying temperature, and consequently, structural stiffness. It is demonstrated that the derived grey-box models are able to outperform equivalent physics-based and data-driven models over a number of simulated case studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Worden, K., Farrar, C.R., Haywood, J., Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monit.: Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 15(4), 540–567 (2008)CrossRef Worden, K., Farrar, C.R., Haywood, J., Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monit.: Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 15(4), 540–567 (2008)CrossRef
2.
go back to reference Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Hoboken (2012)CrossRef Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Hoboken (2012)CrossRef
4.
go back to reference Barthorpe, R.J.: On model-and data-based approaches to structural health monitoring. Ph.D. thesis, University of Sheffield (2010) Barthorpe, R.J.: On model-and data-based approaches to structural health monitoring. Ph.D. thesis, University of Sheffield (2010)
5.
go back to reference Cross, E.J., Gibson, S.J., Jones, M.R., Pitchforth, D.J., Zhang, S., Rogers, T.J.: Physics-informed machine learning for structural health monitoring. In: Cury, A., Ribeiro, D., Ubertini, F., Todd, M.D. (eds.) Structural Health Monitoring Based on Data Science Techniques. SI, vol. 21, pp. 347–367. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-81716-9_17CrossRef Cross, E.J., Gibson, S.J., Jones, M.R., Pitchforth, D.J., Zhang, S., Rogers, T.J.: Physics-informed machine learning for structural health monitoring. In: Cury, A., Ribeiro, D., Ubertini, F., Todd, M.D. (eds.) Structural Health Monitoring Based on Data Science Techniques. SI, vol. 21, pp. 347–367. Springer, Cham (2022). https://​doi.​org/​10.​1007/​978-3-030-81716-9_​17CrossRef
6.
go back to reference Pitchforth, D.J., Rogers, T.J., Tygesen, U.T., Cross, E.J.: Grey-box models for wave loading prediction. Mech. Syst. Signal Process. 159, 107741 (2021)CrossRef Pitchforth, D.J., Rogers, T.J., Tygesen, U.T., Cross, E.J.: Grey-box models for wave loading prediction. Mech. Syst. Signal Process. 159, 107741 (2021)CrossRef
7.
go back to reference Cross, E.J., Rogers, T.J., Gibbons, T.J.: Grey-box modelling for structural health monitoring: physical constraints on machine learning algorithms. Struct. Health Monit. 2019 (2019) Cross, E.J., Rogers, T.J., Gibbons, T.J.: Grey-box modelling for structural health monitoring: physical constraints on machine learning algorithms. Struct. Health Monit. 2019 (2019)
8.
go back to reference Jones, M.R., Rogers, T.J., Gardner, P.A., Cross, E.J.: Constraining gaussian processes for grey-box acoustic emission source localisation. In: International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics (2020) Jones, M.R., Rogers, T.J., Gardner, P.A., Cross, E.J.: Constraining gaussian processes for grey-box acoustic emission source localisation. In: International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics (2020)
9.
go back to reference Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating physics-based modeling with machine learning: a survey. arXiv preprint arXiv:2003.049191(1), 1–34 (2020) Willard, J., Jia, X., Xu, S., Steinbach, M., Kumar, V.: Integrating physics-based modeling with machine learning: a survey. arXiv preprint arXiv:​2003.​049191(1), 1–34 (2020)
10.
go back to reference O’Hagan, A.: Curve fitting and optimal design for prediction. J. Roy. Stat. Soc.: Ser. B (Methodol.) 40(1), 1–24 (1978)MathSciNetMATH O’Hagan, A.: Curve fitting and optimal design for prediction. J. Roy. Stat. Soc.: Ser. B (Methodol.) 40(1), 1–24 (1978)MathSciNetMATH
11.
go back to reference Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT Press, Cambridge (2006)MATH Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2. MIT Press, Cambridge (2006)MATH
12.
go back to reference Haywood-Alexander, M., Dervilis, N., Worden, K., Cross, E.J., Mills, R.S., Rogers, T.J.: Structured machine learning tools for modelling characteristics of guided waves. Mech. Syst. Signal Process. 156, 107628 (2021)CrossRef Haywood-Alexander, M., Dervilis, N., Worden, K., Cross, E.J., Mills, R.S., Rogers, T.J.: Structured machine learning tools for modelling characteristics of guided waves. Mech. Syst. Signal Process. 156, 107628 (2021)CrossRef
13.
go back to reference Cross, E.J., Rogers, T.J.: Physics-derived covariance functions for machine learning in structural dynamics. IFAC-PapersOnLine 54(7), 168–173 (2021)CrossRef Cross, E.J., Rogers, T.J.: Physics-derived covariance functions for machine learning in structural dynamics. IFAC-PapersOnLine 54(7), 168–173 (2021)CrossRef
14.
go back to reference Alvarez, M., Luengo, D., Lawrence, N.D.: Latent force models. In: Artificial Intelligence and Statistics, pp. 9–16. PMLR (2009) Alvarez, M., Luengo, D., Lawrence, N.D.: Latent force models. In: Artificial Intelligence and Statistics, pp. 9–16. PMLR (2009)
15.
go back to reference Kullaa, J.: Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring. Mech. Syst. Signal Process. 25(8), 2976–2989 (2011)CrossRef Kullaa, J.: Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring. Mech. Syst. Signal Process. 25(8), 2976–2989 (2011)CrossRef
16.
go back to reference Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7(12) (2006) Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7(12) (2006)
17.
go back to reference Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, Boca Raton (2001)CrossRef Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. CRC Press, Boca Raton (2001)CrossRef
Metadata
Title
Physical Covariance Functions for Dynamic Systems with Time-Dependent Parameters
Authors
Matthew R. Jones
Timothy J. Rogers
Elizabeth J. Cross
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-07322-9_39