Skip to main content
Top
Published in: Engineering with Computers 2/2012

01-04-2012 | Original Article

A robust solution procedure for hyperelastic solids with large boundary deformation

Authors: Suzanne M. Shontz, Stephen A. Vavasis

Published in: Engineering with Computers | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compressible Mooney–Rivlin theory has been used to model hyperelastic solids, such as rubber and porous polymers, and more recently for the modeling of soft tissues for biomedical tissues, undergoing large elastic deformations. We propose a solution procedure for Lagrangian finite element discretization of a static nonlinear compressible Mooney–Rivlin hyperelastic solid. We consider the case in which the boundary condition is a large prescribed deformation, so that mesh tangling becomes an obstacle for straightforward algorithms. Our solution procedure involves a largely geometric procedure to untangle the mesh: solution of a sequence of linear systems to obtain initial guesses for interior nodal positions for which no element is inverted. After the mesh is untangled, we take Newton iterations to converge to a mechanical equilibrium. The Newton iterations are safeguarded by a line search similar to one used in optimization. Our computational results indicate that the algorithm is up to 70 times faster than a straightforward Newton continuation procedure and is also more robust (i.e., able to tolerate much larger deformations). For a few extremely large deformations, the deformed mesh could only be computed through the use of an expensive Newton continuation method while using a tight convergence tolerance and taking very small steps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonMATH Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, LondonMATH
2.
go back to reference Ciarlet P, Geymonat G (1982) Sur les lois de comportement en élasticité non-linéaire compressible. C R Acad Sci Paris Sér II 295:423–426MathSciNetMATH Ciarlet P, Geymonat G (1982) Sur les lois de comportement en élasticité non-linéaire compressible. C R Acad Sci Paris Sér II 295:423–426MathSciNetMATH
4.
go back to reference Gibson L, Ashby M (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, Cambridge Gibson L, Ashby M (1997) Cellular solids. Structure and properties, 2nd edn. Cambridge University Press, Cambridge
5.
go back to reference Weichert F, Schröder A, Landes C, Shamaa A, Awad SK, Walczak L, Müller H, Wagner M (2010) Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model. Med Biol Eng Comput 48:597–610CrossRef Weichert F, Schröder A, Landes C, Shamaa A, Awad SK, Walczak L, Müller H, Wagner M (2010) Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model. Med Biol Eng Comput 48:597–610CrossRef
6.
go back to reference Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu W, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
7.
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publishers, New YorkMATH Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publishers, New YorkMATH
9.
go back to reference Shontz S, Vavasis S (2010) Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT Numer Math 50(4):863–884MathSciNetMATHCrossRef Shontz S, Vavasis S (2010) Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT Numer Math 50(4):863–884MathSciNetMATHCrossRef
10.
go back to reference Wright S (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, PhiladelphiaMATHCrossRef Wright S (1997) Primal-dual interior-point methods. Society for Industrial and Applied Mathematics, PhiladelphiaMATHCrossRef
11.
go back to reference Stein K, Tezduyar T, Benney R (2003) Moving mesh techniques for fluid–structure interactions with large displacements. J Appl Mech (ASME) 70:58–63MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Moving mesh techniques for fluid–structure interactions with large displacements. J Appl Mech (ASME) 70:58–63MATHCrossRef
12.
go back to reference Shontz SM (2005) Numerical methods for problems with moving meshes. Ph.D. Thesis. Cornell University Shontz SM (2005) Numerical methods for problems with moving meshes. Ph.D. Thesis. Cornell University
13.
go back to reference Freitag L, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49:109–125MATHCrossRef Freitag L, Plassmann P (2000) Local optimization-based simplicial mesh untangling and improvement. Int J Numer Methods Eng 49:109–125MATHCrossRef
14.
go back to reference Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, BaltimoreMATH
15.
go back to reference Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, Philadelphia Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, Philadelphia
16.
go back to reference Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Proceedings of the first workshop on applied computational geometry. Association for Computing Machinery, pp 124–133 Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Proceedings of the first workshop on applied computational geometry. Association for Computing Machinery, pp 124–133
17.
go back to reference Knupp P (2003) Sandia National Laboratories, personal communication Knupp P (2003) Sandia National Laboratories, personal communication
18.
go back to reference Shephard M, Dey S, Georges M (1995) Automatic meshing of curved three-dimensional domains: curving finite elements and curvature-based mesh control. In: Babuska I, Flaherty J, Hopcroft J, Henshaw W, Oliger J, Tezduyar T (eds) Modeling, mesh generation, and adaptive numerical methods for partial differential equations. Springer, New York Shephard M, Dey S, Georges M (1995) Automatic meshing of curved three-dimensional domains: curving finite elements and curvature-based mesh control. In: Babuska I, Flaherty J, Hopcroft J, Henshaw W, Oliger J, Tezduyar T (eds) Modeling, mesh generation, and adaptive numerical methods for partial differential equations. Springer, New York
19.
go back to reference Vavasis S (2003) A Bernstein-Bézier sufficient condition for invertibility of polynomial mappings. Archived by arxiv.org, cs.NA/0308021 Vavasis S (2003) A Bernstein-Bézier sufficient condition for invertibility of polynomial mappings. Archived by arxiv.org, cs.NA/0308021
20.
go back to reference Salem A, Canann S, Saigal S (1997) Robust quality metric for quadratic triangular 2D finite elements. Trends Unstruct Mesh Gener 220:73–80 Salem A, Canann S, Saigal S (1997) Robust quality metric for quadratic triangular 2D finite elements. Trends Unstruct Mesh Gener 220:73–80
21.
go back to reference Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D arbitrarily curved finite elements. Int J Numer Methods Eng 50:253–272MathSciNetMATHCrossRef Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D arbitrarily curved finite elements. Int J Numer Methods Eng 50:253–272MathSciNetMATHCrossRef
22.
go back to reference Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D finite elements with one edge curved. Int J Numer Methods Eng 50:181–197MathSciNetMATHCrossRef Salem A, Canann S, Saigal S (2001) Mid-node admissible spaces for quadratic triangular 2D finite elements with one edge curved. Int J Numer Methods Eng 50:181–197MathSciNetMATHCrossRef
23.
go back to reference Salem A, Saigal S, Canann S (2001) Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng Comput 17:39–54MATHCrossRef Salem A, Saigal S, Canann S (2001) Mid-node admissible space for 3D quadratic tetrahedral finite elements. Eng Comput 17:39–54MATHCrossRef
24.
go back to reference Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH
Metadata
Title
A robust solution procedure for hyperelastic solids with large boundary deformation
Authors
Suzanne M. Shontz
Stephen A. Vavasis
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Engineering with Computers / Issue 2/2012
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-011-0225-y

Other articles of this Issue 2/2012

Engineering with Computers 2/2012 Go to the issue