Skip to main content
Top
Published in: Wireless Networks 5/2014

01-07-2014

A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band

Authors: Massimiliano Pierobon, Josep Miquel Jornet, Nadine Akkari, Suleiman Almasri, Ian F. Akyildiz

Published in: Wireless Networks | Issue 5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless NanoSensor Networks (WNSNs) will allow novel intelligent nanomaterial-based sensors, or nanosensors, to detect new types of events at the nanoscale in a distributed fashion over extended areas. Two main characteristics are expected to guide the design of WNSNs architectures and protocols, namely, their Terahertz Band wireless communication and their nanoscale energy harvesting process. In this paper, a routing framework for WNSNs is proposed to optimize the use of the harvested energy to guarantee the perpetual operation of the WNSN while, at the same time, increasing the overall network throughput. The proposed routing framework, which is based on a previously proposed medium access control protocol for the joint throughput and lifetime optimization in WNSNs, uses a hierarchical cluster-based architecture that offloads the network operation complexity from the individual nanosensors towards the cluster heads, or nano-controllers. This framework is based on the evaluation of the probability of saving energy through a multi-hop transmission, the tuning of the transmission power of each nanosensor for throughput and hop distance optimization, and the selection of the next hop nanosensor on the basis of their available energy and current load. The performance of this framework is also numerically evaluated in terms of energy, capacity, and delay, and compared to that of the single-hop communication for the same WNSN scenario. The results show how the energy per bit consumption and the achievable throughput can be jointly maximized by exploiting the peculiarities of this networking paradigm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef
2.
go back to reference Box, F. (1986). Utilization of atmospheric transmission losses for interference-resistant communications. IEEE Transactions on Communications, 34(10), 1009–1015.CrossRef Box, F. (1986). Utilization of atmospheric transmission losses for interference-resistant communications. IEEE Transactions on Communications, 34(10), 1009–1015.CrossRef
4.
go back to reference Deligeorgis, G., Coccetti, F., Konstantinidis, G., & Plana, R. (2012). Radio frequency signal detection by ballistic transport in y-shaped graphene nanoribbons. Applied Physics Letters, 101(1), 013502.CrossRef Deligeorgis, G., Coccetti, F., Konstantinidis, G., & Plana, R. (2012). Radio frequency signal detection by ballistic transport in y-shaped graphene nanoribbons. Applied Physics Letters, 101(1), 013502.CrossRef
5.
go back to reference Drexler, K. E. (1986). Molecular engineering: Assemblers and future space hardware. Paper AAS-86-415, presented at Aerospace XXI, the 33rd annual meeting of the American Astronautical Society, Boulder, CO, 26–29 Oct 1986. Drexler, K. E. (1986). Molecular engineering: Assemblers and future space hardware. Paper AAS-86-415, presented at Aerospace XXI, the 33rd annual meeting of the American Astronautical Society, Boulder, CO, 26–29 Oct 1986.
6.
go back to reference Drexler, E. (1992). Nanosystems: Molecular machinery, manufacturing, and computation. NY: Wiley. Drexler, E. (1992). Nanosystems: Molecular machinery, manufacturing, and computation. NY: Wiley.
7.
go back to reference Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physical Letters, 94, 164102. doi:10.1063/1.3120279. Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physical Letters, 94, 164102. doi:10.​1063/​1.​3120279.
8.
go back to reference Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef
9.
go back to reference Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRef
10.
go back to reference Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. To appear in IEEE JSAC, Special Issue on Emerging Technologies for Communications. Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. To appear in IEEE JSAC, Special Issue on Emerging Technologies for Communications.
11.
go back to reference Otsuji, T., Boubanga Tombet, S., Satou, A., Ryzhii, M., & Ryzhii, V. (2013). Terahertz-wave generation using graphene—toward new types of terahertz lasers. IEEE Journal of Selected Topics in Quantum Electronics, 19(1), 8,400,209.CrossRef Otsuji, T., Boubanga Tombet, S., Satou, A., Ryzhii, M., & Ryzhii, V. (2013). Terahertz-wave generation using graphene—toward new types of terahertz lasers. IEEE Journal of Selected Topics in Quantum Electronics, 19(1), 8,400,209.CrossRef
12.
go back to reference Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes. McGraw-Hill. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes. McGraw-Hill.
13.
go back to reference Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, m., Schoebel, J., & Kurner, T. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.CrossRef Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, m., Schoebel, J., & Kurner, T. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.CrossRef
14.
go back to reference Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., & Geim, A. K. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320(5874), 356–358. Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., & Geim, A. K. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320(5874), 356–358.
15.
go back to reference Sensale-Rodriguez, B., Yan, R., Kelly, M. M., Fang, T., Tahy, K., Hwang, W. S., Jena, D., Liu, L., & Xing, H. G. (2012). Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 3, 780.CrossRef Sensale-Rodriguez, B., Yan, R., Kelly, M. M., Fang, T., Tahy, K., Hwang, W. S., Jena, D., Liu, L., & Xing, H. G. (2012). Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 3, 780.CrossRef
16.
go back to reference Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.CrossRef Tamagnone, M., Gomez-Diaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.CrossRef
17.
go back to reference Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., & Tredicucci, A. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11, 865–871.CrossRef Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., & Tredicucci, A. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11, 865–871.CrossRef
18.
go back to reference Wang, P., Jornet, J. M., Malik, M. A., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Networks (Elsevier) Journal. (to appear) Wang, P., Jornet, J. M., Malik, M. A., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Networks (Elsevier) Journal. (to appear)
19.
go back to reference Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRef Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRef
Metadata
Title
A routing framework for energy harvesting wireless nanosensor networks in the Terahertz Band
Authors
Massimiliano Pierobon
Josep Miquel Jornet
Nadine Akkari
Suleiman Almasri
Ian F. Akyildiz
Publication date
01-07-2014
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2014
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-013-0665-y

Other articles of this Issue 5/2014

Wireless Networks 5/2014 Go to the issue