Skip to main content
Top
Published in: Computational Mechanics 6/2017

24-07-2017 | Original Paper

A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials

Authors: E. T. Ooi, C. Song, S. Natarajan

Published in: Computational Mechanics | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This manuscript presents an extension of the recently-developed high order complete scaled boundary shape functions to model elasto-static problems in functionally graded materials. Both isotropic and orthotropic functionally graded materials are modelled. The high order complete properties of the shape functions are realized through the introduction of bubble-like functions derived from the equilibrium condition of a polygon subjected to body loads. The bubble functions preserve the displacement compatibility between the elements in the mesh. The heterogeneity resulting from the material gradient introduces additional terms in the polygon stiffness matrix that are integrated analytically. Few numerical benchmarks were used to validate the developed formulation. The high order completeness property of the bubble functions result in superior accuracy and convergence rates for generic elasto-static and fracture problems involving functionally graded materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bao G, Wang L (1995) Modelling cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871CrossRefMATH Bao G, Wang L (1995) Modelling cracking in functionally graded ceramic/metal coatings. Int J Solids Struct 32:2853–2871CrossRefMATH
2.
go back to reference Behnke R, Mundil M, Birk C, Kaliske M (2014) A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. Int J Numer Methods Eng 99:966–999CrossRefMATHMathSciNet Behnke R, Mundil M, Birk C, Kaliske M (2014) A physically and geometrically nonlinear scaled-boundary-based finite element formulation for fracture in elastomers. Int J Numer Methods Eng 99:966–999CrossRefMATHMathSciNet
4.
go back to reference Berlo SP (2009) Stress concentration effects in highly localized functionally graded materials. Masters thesis, University of Rhode Island Berlo SP (2009) Stress concentration effects in highly localized functionally graded materials. Masters thesis, University of Rhode Island
5.
go back to reference Birk C, Behnke R (2012) A modified scaled boundary finite element method for three-dimensional dynamic soil–structure interaction in layered soil. Int J Numer Methods Eng 89:371–402CrossRefMATHMathSciNet Birk C, Behnke R (2012) A modified scaled boundary finite element method for three-dimensional dynamic soil–structure interaction in layered soil. Int J Numer Methods Eng 89:371–402CrossRefMATHMathSciNet
6.
go back to reference Chen SS, Xu CJ, Tong GS (2015) A meshless local neighbour interpolation method to modeling of functionally graded viscoelastic materials. Eng Anal Bound Elem 52:92–98CrossRefMathSciNet Chen SS, Xu CJ, Tong GS (2015) A meshless local neighbour interpolation method to modeling of functionally graded viscoelastic materials. Eng Anal Bound Elem 52:92–98CrossRefMathSciNet
7.
go back to reference Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589CrossRefMATHMathSciNet Chiong I, Ooi ET, Song C, Tin-Loi F (2014) Scaled boundary polygons with application to fracture analysis of functionally graded materials. Int J Numer Methods Eng 98:562–589CrossRefMATHMathSciNet
8.
go back to reference Enab TA (2014) Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Eng J 5:839–850CrossRef Enab TA (2014) Stress concentration analysis in functionally graded plates with elliptic holes under biaxial loadings. Ain Shams Eng J 5:839–850CrossRef
9.
go back to reference Gao XW (2002) A boundary element method with internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech (ASME) 69:154–160CrossRefMATH Gao XW (2002) A boundary element method with internal cells for two-dimensional and three-dimensional elastoplastic problems. J Appl Mech (ASME) 69:154–160CrossRefMATH
10.
go back to reference Goswami S, Becker W (2012) Computation of 3-d stress singlarities for multiple cracks and crack intersections by the scaled boundary finite element method. Int J Fract 175:13–25CrossRef Goswami S, Becker W (2012) Computation of 3-d stress singlarities for multiple cracks and crack intersections by the scaled boundary finite element method. Int J Fract 175:13–25CrossRef
11.
go back to reference Hernik S (2010) New concept of finite element method for FGM materials. Czas Tech Mech Politech Krak 107:99–106 Hernik S (2010) New concept of finite element method for FGM materials. Czas Tech Mech Politech Krak 107:99–106
12.
go back to reference Ibrahimbegovic A, Wilson EL (1991) A modified method of incompatible modes. Commun Numer Methods Eng 7:187–194CrossRefMATH Ibrahimbegovic A, Wilson EL (1991) A modified method of incompatible modes. Commun Numer Methods Eng 7:187–194CrossRefMATH
13.
go back to reference Kim JH, Paulino GH (2002) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech 69:502–514CrossRefMATH Kim JH, Paulino GH (2002) Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech 69:502–514CrossRefMATH
14.
15.
go back to reference Liu J, Peng HF, Gao XW, Cui M (2015) A traction-recovery method for evaluating boundary stresses on thermal elasticity problems of FGMs. Eng Anal Bound Elem 61:226–231CrossRefMathSciNet Liu J, Peng HF, Gao XW, Cui M (2015) A traction-recovery method for evaluating boundary stresses on thermal elasticity problems of FGMs. Eng Anal Bound Elem 61:226–231CrossRefMathSciNet
17.
go back to reference Martinez-Paneda E, Gallego R (2015) Numerical analysis of quasi-static fracture in functionally graded materials. Int J Mech Mater Des 11:405–424CrossRef Martinez-Paneda E, Gallego R (2015) Numerical analysis of quasi-static fracture in functionally graded materials. Int J Mech Mater Des 11:405–424CrossRef
18.
go back to reference Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22CrossRefMATH Meyer M, Barr A, Lee H, Desbrun M (2002) Generalized barycentric coordinates on irregular polygons. J Graph Tools 7:13–22CrossRefMATH
19.
go back to reference Natarajan S, Song C, Belouettar S (2014) Numerical evaluation of stress intensity factors and t-stress for interfacial cracks and cracks terminating at interface with asymptotic enrichment. Comput Methods Appl Mech Eng 279:86–112CrossRefMathSciNet Natarajan S, Song C, Belouettar S (2014) Numerical evaluation of stress intensity factors and t-stress for interfacial cracks and cracks terminating at interface with asymptotic enrichment. Comput Methods Appl Mech Eng 279:86–112CrossRefMathSciNet
20.
go back to reference Nguyen VP, Rabczuk T, Bordas S, Dufolt M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813CrossRefMATHMathSciNet Nguyen VP, Rabczuk T, Bordas S, Dufolt M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813CrossRefMATHMathSciNet
21.
go back to reference Ooi ET, Song C, Tin-Loi F, Yang ZJ (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91:319–342CrossRefMATHMathSciNet Ooi ET, Song C, Tin-Loi F, Yang ZJ (2012) Polygon scaled boundary finite elements for crack propagation modelling. Int J Numer Methods Eng 91:319–342CrossRefMATHMathSciNet
22.
go back to reference Ooi ET, Song C, Tin-Loi F (2014) A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng 268:905–937CrossRefMATHMathSciNet Ooi ET, Song C, Tin-Loi F (2014) A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng 268:905–937CrossRefMATHMathSciNet
23.
go back to reference Ooi ET, Song C, Natarajan S (2016) Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions. Int J Numer Methods Eng 108:1086–1120CrossRefMathSciNet Ooi ET, Song C, Natarajan S (2016) Construction of high-order complete scaled boundary shape functions over arbitrary polygons with bubble functions. Int J Numer Methods Eng 108:1086–1120CrossRefMathSciNet
24.
go back to reference Riveiro MA, Gallego R (2013) Boundary elements and the analog equation method for the solution of elastic problems in 3-d non-homogeneous bodies. Comput Methods Appl Mech Eng 263:12–19CrossRefMATHMathSciNet Riveiro MA, Gallego R (2013) Boundary elements and the analog equation method for the solution of elastic problems in 3-d non-homogeneous bodies. Comput Methods Appl Mech Eng 263:12–19CrossRefMATHMathSciNet
25.
go back to reference Rosseau CE, Tippur HV (2000) Compositionally graded materials with ccrack normal to the elastic gradient. Acta Mater 48:4021–4033CrossRef Rosseau CE, Tippur HV (2000) Compositionally graded materials with ccrack normal to the elastic gradient. Acta Mater 48:4021–4033CrossRef
26.
go back to reference Saddd MH (2005) Elasticity: theory, applications and numerics. Elsevier Academic Press, Butterworth-Heinemann, Burlington Saddd MH (2005) Elasticity: theory, applications and numerics. Elsevier Academic Press, Butterworth-Heinemann, Burlington
27.
go back to reference Santare AG, Lambros MH (2000) Use of graded finite elements to model the behaviour of nonhomogeneous materials. J Appl Mech (ASME) 67:819–822CrossRefMATH Santare AG, Lambros MH (2000) Use of graded finite elements to model the behaviour of nonhomogeneous materials. J Appl Mech (ASME) 67:819–822CrossRefMATH
28.
go back to reference Sladek J, Sladek V, Zhang C (2005) Stress analysis in anisotropic functionally graded materials by the MLPG method. Eng Anal Bound Elem 29:597–609CrossRefMATH Sladek J, Sladek V, Zhang C (2005) Stress analysis in anisotropic functionally graded materials by the MLPG method. Eng Anal Bound Elem 29:597–609CrossRefMATH
29.
go back to reference Sladek J, Sladek V, Zhang C, Solek P, Pan E (2007) Evaluation of fracture parameters in continuously nonhomogeneous piezoelectroc solids. Int J Fract 145:313–326CrossRefMATH Sladek J, Sladek V, Zhang C, Solek P, Pan E (2007) Evaluation of fracture parameters in continuously nonhomogeneous piezoelectroc solids. Int J Fract 145:313–326CrossRefMATH
30.
go back to reference Sladek J, Sladek V, Zhang C (2008a) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part 1: interaction integral. Mech Adv Mater Struct 15:438–443CrossRef Sladek J, Sladek V, Zhang C (2008a) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part 1: interaction integral. Mech Adv Mater Struct 15:438–443CrossRef
31.
go back to reference Sladek J, Sladek V, Zhang C (2008b) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part ii: meshless method. Mech Adv Mater Struct 15:444–452CrossRef Sladek J, Sladek V, Zhang C (2008b) Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part ii: meshless method. Mech Adv Mater Struct 15:444–452CrossRef
32.
go back to reference Sladek J, Sladek V, Solek P, Zhang C (2010) Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the mlpg. Int J Solids Struct 47:1381–1391CrossRefMATH Sladek J, Sladek V, Solek P, Zhang C (2010) Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the mlpg. Int J Solids Struct 47:1381–1391CrossRefMATH
33.
go back to reference Sladek J, Stanak P, Han ZD, Sladek V, Atluri SN (2013) Applications of the mlpg method in engineering and sciences: a review. Comput Model Eng Sci 92:423–475 Sladek J, Stanak P, Han ZD, Sladek V, Atluri SN (2013) Applications of the mlpg method in engineering and sciences: a review. Comput Model Eng Sci 92:423–475
35.
go back to reference Song C (2006) Analysis of singular stress fields at multi-material corners under thermal loading. Int J Numer Methods Eng 65:620–652CrossRefMATH Song C (2006) Analysis of singular stress fields at multi-material corners under thermal loading. Int J Numer Methods Eng 65:620–652CrossRefMATH
36.
go back to reference Song C, Wolf JP (1997) The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput Methods Appl Mech Eng 147:329–355CrossRefMATHMathSciNet Song C, Wolf JP (1997) The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Comput Methods Appl Mech Eng 147:329–355CrossRefMATHMathSciNet
37.
go back to reference Song H, Tao L (2010) An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder. Int J Numer Methods Fluids 63:96–118MATH Song H, Tao L (2010) An efficient scaled boundary FEM model for wave interaction with a nonuniform porous cylinder. Int J Numer Methods Fluids 63:96–118MATH
39.
go back to reference Talischi C, Paulino GH (2014) Addressing integration error for polygonal finite elements trhough polynomial projections: a patch test connection. Math Models Methods Appl Sci 24:1701–1727CrossRefMATHMathSciNet Talischi C, Paulino GH (2014) Addressing integration error for polygonal finite elements trhough polynomial projections: a patch test connection. Math Models Methods Appl Sci 24:1701–1727CrossRefMATHMathSciNet
40.
go back to reference Talischi C, Pérereira A, Menezes IF, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747CrossRefMATHMathSciNet Talischi C, Pérereira A, Menezes IF, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Methods Eng 102:728–747CrossRefMATHMathSciNet
41.
go back to reference Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossRefMATH Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219CrossRefMATH
42.
go back to reference Vatanabe SL, Paulino GH, Silva ECN (2013) Design of functionally graded piezocomposites using topology optimization and homogenization—toward effective energy harvesting materials. Comput Methods Appl Mech Eng 266:205–218CrossRefMATHMathSciNet Vatanabe SL, Paulino GH, Silva ECN (2013) Design of functionally graded piezocomposites using topology optimization and homogenization—toward effective energy harvesting materials. Comput Methods Appl Mech Eng 266:205–218CrossRefMATHMathSciNet
43.
go back to reference Wachspress EL (1975) A rational finite element basis. Academic Press, New YorkMATH Wachspress EL (1975) A rational finite element basis. Academic Press, New YorkMATH
44.
go back to reference Wang H, Qin QH (2008) Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng Anal Bound Elem 32:704–712CrossRefMATH Wang H, Qin QH (2008) Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng Anal Bound Elem 32:704–712CrossRefMATH
45.
go back to reference Williamson RL, Rabin BH, Drake JT (1993) Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1: model description and geometrical effects. J Appl Phys 74:1310–1320CrossRef Williamson RL, Rabin BH, Drake JT (1993) Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1: model description and geometrical effects. J Appl Phys 74:1310–1320CrossRef
46.
go back to reference Yang K, Feng WZ, Peng HF, Lv J (2015) A new analytical approach of functionally graded material structures for thermal stress BEM analysis. Int Commun Heat Mass Transf 62:26–32CrossRef Yang K, Feng WZ, Peng HF, Lv J (2015) A new analytical approach of functionally graded material structures for thermal stress BEM analysis. Int Commun Heat Mass Transf 62:26–32CrossRef
47.
go back to reference Zhang C, Cui M, Wang J, Gao XW, Sladek J, Sladek V (2011) 3d crack analysis in functionally graded materials. Eng Fract Mech 78:585–604CrossRef Zhang C, Cui M, Wang J, Gao XW, Sladek J, Sladek V (2011) 3d crack analysis in functionally graded materials. Eng Fract Mech 78:585–604CrossRef
Metadata
Title
A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials
Authors
E. T. Ooi
C. Song
S. Natarajan
Publication date
24-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2017
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1443-y

Other articles of this Issue 6/2017

Computational Mechanics 6/2017 Go to the issue