Skip to main content
Top
Published in: Measurement Techniques 5/2016

23-08-2016 | PHYSICOCHEMICAL MEASUREMENTS

A Sensor of Graphite Paper with Multiwalled Nanotubes

Author: S. V. Antonenko

Published in: Measurement Techniques | Issue 5/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The results of a voltage-current characteristics study of sensors made of graphite paper with multiwall nanotubes are presented. It has been found experimentally that these samples are usable as gas sensors for the detection of NH3, H2, and Cl2 in air.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yu. Wang and J. T. W. Yeow, “A review of carbon nanotube-based gas sensors,” J. Sensors, Art. ID 493904 (2009). Yu. Wang and J. T. W. Yeow, “A review of carbon nanotube-based gas sensors,” J. Sensors, Art. ID 493904 (2009).
2.
go back to reference Yu. Wong, W. P. M. Kang, J. L. Davidson, et al., “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sensors and Actuators B, 93, No. 1–3, 327–332 (2003). Yu. Wong, W. P. M. Kang, J. L. Davidson, et al., “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sensors and Actuators B, 93, No. 1–3, 327–332 (2003).
3.
go back to reference K. A. Mirica, J. G. Weis, J. M. Schnorr, et al., “Mechanical drawing of gas sensors on paper,” Angew. Chemie Int. Ed., 51, No. 43, 1740–1745 (2012).CrossRef K. A. Mirica, J. G. Weis, J. M. Schnorr, et al., “Mechanical drawing of gas sensors on paper,” Angew. Chemie Int. Ed., 51, No. 43, 1740–1745 (2012).CrossRef
4.
go back to reference B. Esser, J. M. Schnorr, and T. M. Swager, “Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness,” Angew. Chemie Int. Ed., 51, No. 23, 5752–5756 (2012).CrossRef B. Esser, J. M. Schnorr, and T. M. Swager, “Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness,” Angew. Chemie Int. Ed., 51, No. 23, 5752–5756 (2012).CrossRef
5.
go back to reference J. Kong, N. R. Franklin, C. Zhou, et al., “Nanotube molecular wires as chemical sensors,” Science, 287, No. 5453, 622–625 (2000). J. Kong, N. R. Franklin, C. Zhou, et al., “Nanotube molecular wires as chemical sensors,” Science, 287, No. 5453, 622–625 (2000).
6.
go back to reference J. R. Wood, Q. Zhao, M. D. Frogley, et al., “Carbon nanotubes: from molecular to macroscopic sensors,” Phys. Rev., 62, No. 11, 7571–7575 (2000).ADSCrossRef J. R. Wood, Q. Zhao, M. D. Frogley, et al., “Carbon nanotubes: from molecular to macroscopic sensors,” Phys. Rev., 62, No. 11, 7571–7575 (2000).ADSCrossRef
7.
go back to reference J. Li and N. T. Nog, “Carbon Nanotube Sensors,” in: Encyclopedia of Nanoscience and Nanotechnology, Amer. Sci. Publ. (2004), Vol. 1, pp. 591–601. J. Li and N. T. Nog, “Carbon Nanotube Sensors,” in: Encyclopedia of Nanoscience and Nanotechnology, Amer. Sci. Publ. (2004), Vol. 1, pp. 591–601.
8.
go back to reference S. Chopra, A. Pham, J. Gallard, et al., “Carbon-nanotube-based resonant-circuit sensor for ammonia,” Appl. Phys. Lett., 80, No. 24, 4632–4634 (2002).ADSCrossRef S. Chopra, A. Pham, J. Gallard, et al., “Carbon-nanotube-based resonant-circuit sensor for ammonia,” Appl. Phys. Lett., 80, No. 24, 4632–4634 (2002).ADSCrossRef
9.
go back to reference S. Supple and N. Quirke, “Rapid imbibition of fl uids in carbon nanotubes,” Phys. Rev. Lett., 90, No. 21, 214501–214514 (2003).ADSCrossRef S. Supple and N. Quirke, “Rapid imbibition of fl uids in carbon nanotubes,” Phys. Rev. Lett., 90, No. 21, 214501–214514 (2003).ADSCrossRef
10.
go back to reference A. Modi, N. N. Koratkar, E. Lass, et al., “Miniaturized gas ionization sensors using carbon nanotubes,” Nature, 424, 171–174 (2003).ADSCrossRef A. Modi, N. N. Koratkar, E. Lass, et al., “Miniaturized gas ionization sensors using carbon nanotubes,” Nature, 424, 171–174 (2003).ADSCrossRef
11.
go back to reference S. V. Antonenko, O. S. Malinovskaya, and S. N. Mal’tsev, “Synthesis of carbon nanotubes by current annealing graphite paper,” Prib. Tekhn. Experim., 50, No. 4, 123–124 (2007). S. V. Antonenko, O. S. Malinovskaya, and S. N. Mal’tsev, “Synthesis of carbon nanotubes by current annealing graphite paper,” Prib. Tekhn. Experim., 50, No. 4, 123–124 (2007).
12.
go back to reference S. V. Antonenko and S. N. Mal’tsev, “Synthesis methods of carbon nanotubes using magnetron sputtering at direct current,” Prib. Tekhn. Experim., 48, No. 3, 150–152 (2005). S. V. Antonenko and S. N. Mal’tsev, “Synthesis methods of carbon nanotubes using magnetron sputtering at direct current,” Prib. Tekhn. Experim., 48, No. 3, 150–152 (2005).
13.
go back to reference N. Sinha, J. Ma, and J. T. W. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol., 6, No. 2, 573–590 (2006).CrossRef N. Sinha, J. Ma, and J. T. W. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol., 6, No. 2, 573–590 (2006).CrossRef
14.
go back to reference V. I. Troyan, P. V. Borisyuk, O. S. Vasil’ev, et al., “Measuring local thermoEMF of metals by scanning tunneling microscopy,” Izmer. Tekhn., 8, 9–12 (2014). V. I. Troyan, P. V. Borisyuk, O. S. Vasil’ev, et al., “Measuring local thermoEMF of metals by scanning tunneling microscopy,” Izmer. Tekhn., 8, 9–12 (2014).
Metadata
Title
A Sensor of Graphite Paper with Multiwalled Nanotubes
Author
S. V. Antonenko
Publication date
23-08-2016
Publisher
Springer US
Published in
Measurement Techniques / Issue 5/2016
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-016-1006-1

Other articles of this Issue 5/2016

Measurement Techniques 5/2016 Go to the issue