Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2022

10-04-2022 | Original Article

A sequential attention interface with a dense reward function for mitosis detection

Authors: Maxwell Hwang, Cai Wu, Wei-Cheng Jiang, Wei-Chen Hung

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The work aims to develop a fast detection method for instances of mitosis in breast cell sections, which needs time-consuming and labor-intensive searches. The system consists of two sequential processes. The first involves data pre-processing to avoid confusing images transferring to the successive detection procedure from wasteful computations. The input data is filtered using the blue ratio threshold to remove unnecessary background information and increase the color difference between the target and the non-target. Cropped images of suspicious candidates are classified as mitotic or non-mitotic employing a hard attention model, which only grapes the fine trained features locally and detailly instead of the entire picture. There is less computational complexity in terms of efficiency and performance because there are fewer parameters and smaller image sizes, so the proposed classification system outperforms traditional models, such as LEnet-5 and VGG-19, for the benchmarked data set provided in the TPAC2016 competition data sets. The proposed method is also compared to other methods listed on a ranking table for the ICPR2012 competition using its official test data set.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Appendix
Available only for authorised users
Literature
1.
go back to reference Huh S, Bise R, Chen M, Kanade T (2010) Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans Med Imaging 30(3):586–596 Huh S, Bise R, Chen M, Kanade T (2010) Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans Med Imaging 30(3):586–596
3.
go back to reference Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013, September) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 411–418 Cireşan DC, Giusti A, Gambardella LM, Schmidhuber J (2013, September) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 411–418
4.
go back to reference Shkolyar A, Gefen A, Benayahu D, Greenspan H (2015, August) Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 743–746 Shkolyar A, Gefen A, Benayahu D, Greenspan H (2015, August) Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 743–746
5.
go back to reference LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
6.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
7.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
8.
go back to reference Liu AA, Li K, Kanade T (2010, April) Mitosis sequence detection using hidden conditional random fields. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 580–583 Liu AA, Li K, Kanade T (2010, April) Mitosis sequence detection using hidden conditional random fields. In: 2010 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 580–583
9.
go back to reference Saha M, Chakraborty C, Racoceanu D (2018) Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph 64:29–40CrossRef Saha M, Chakraborty C, Racoceanu D (2018) Efficient deep learning model for mitosis detection using breast histopathology images. Comput Med Imaging Graph 64:29–40CrossRef
10.
go back to reference Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform, 7 Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform, 7
11.
go back to reference Zhou DX (2020) Theory of deep convolutional neural networks: Downsampling. Neural Netw 124:319–327CrossRef Zhou DX (2020) Theory of deep convolutional neural networks: Downsampling. Neural Netw 124:319–327CrossRef
12.
go back to reference Aptoula E, Courty N, Lefevre S (2013, April) Mitosis detection in breast cancer histological images with mathematical morphology. In: 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, pp 1–4 Aptoula E, Courty N, Lefevre S (2013, April) Mitosis detection in breast cancer histological images with mathematical morphology. In: 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, pp 1–4
13.
go back to reference Irshad H (2013) Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J Pathol Inform 4 Irshad H (2013) Automated mitosis detection in histopathology using morphological and multi-channel statistics features. J Pathol Inform 4
14.
go back to reference Alom MZ, Aspiras T, Taha TM, Bowen TJ, Asari VK (2020) MitosisNet: end-to-end mitotic cell detection by multi-task learning. IEEE Access 8:68695–68710CrossRef Alom MZ, Aspiras T, Taha TM, Bowen TJ, Asari VK (2020) MitosisNet: end-to-end mitotic cell detection by multi-task learning. IEEE Access 8:68695–68710CrossRef
15.
go back to reference Ding S, Qu S, Xi Y, Wan S (2020) Stimulus-driven and concept-driven analysis for image caption generation. Neurocomputing 398:520–530CrossRef Ding S, Qu S, Xi Y, Wan S (2020) Stimulus-driven and concept-driven analysis for image caption generation. Neurocomputing 398:520–530CrossRef
16.
go back to reference Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:​1409.​0473
17.
go back to reference Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: European Conference on Computer Vision. Springer, Cham, pp 213–229 Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. In: European Conference on Computer Vision. Springer, Cham, pp 213–229
18.
19.
go back to reference Huang X, Sun W, Tseng TLB, Li C, Qian W (2019) Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput Med Imaging Graph 74:25–36CrossRef Huang X, Sun W, Tseng TLB, Li C, Qian W (2019) Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput Med Imaging Graph 74:25–36CrossRef
20.
go back to reference Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, Pluim JP (2019) Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med Image Anal 54:111–121CrossRef Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T, Pluim JP (2019) Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med Image Anal 54:111–121CrossRef
21.
go back to reference Roux L, Racoceanu D, Loménie N, Kulikova M, Irshad H, Klossa J, Gurcan MN (2013) Mitosis detection in breast cancer histological images An ICPR 2012 contest. J Pathol Inform 4 Roux L, Racoceanu D, Loménie N, Kulikova M, Irshad H, Klossa J, Gurcan MN (2013) Mitosis detection in breast cancer histological images An ICPR 2012 contest. J Pathol Inform 4
22.
go back to reference Sommer C, Fiaschi L, Hamprecht FA, Gerlich DW (2012) Learning-based mitotic cell detection in histopathological images. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). IEEE, pp 2306-2309 Sommer C, Fiaschi L, Hamprecht FA, Gerlich DW (2012) Learning-based mitotic cell detection in histopathological images. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). IEEE, pp 2306-2309
23.
go back to reference Sebai M, Wang X, Wang T (2020) MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Med Biol Eng Comput 58:1603–1623CrossRef Sebai M, Wang X, Wang T (2020) MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Med Biol Eng Comput 58:1603–1623CrossRef
24.
go back to reference Tek FB (2013) Mitosis detection using generic features and an ensemble of cascade adaboosts. J Pathol Inform 4 Tek FB (2013) Mitosis detection using generic features and an ensemble of cascade adaboosts. J Pathol Inform 4
25.
go back to reference Mathew T, Kini JR, Rajan J (2020) Computational methods for automated mitosis detection in histopathology images: a review. Biocybern Biomed Eng Mathew T, Kini JR, Rajan J (2020) Computational methods for automated mitosis detection in histopathology images: a review. Biocybern Biomed Eng
26.
go back to reference Hwang M, Wang D, Wu C, Jiang WC, Kong XX, Hwang KS, Ding K (2020) A fuzzy segmentation method to learn classification of mitosis. Int J Fuzzy Syst 22:1653–1664CrossRef Hwang M, Wang D, Wu C, Jiang WC, Kong XX, Hwang KS, Ding K (2020) A fuzzy segmentation method to learn classification of mitosis. Int J Fuzzy Syst 22:1653–1664CrossRef
27.
go back to reference Irshad H, Jalali S, Roux L, Racoceanu D, Hwee LJ, Le Naour G, Capron F (2013) Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach. J Pathol Inform 4(Suppl) Irshad H, Jalali S, Roux L, Racoceanu D, Hwee LJ, Le Naour G, Capron F (2013) Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach. J Pathol Inform 4(Suppl)
28.
go back to reference Pan X, Lu Y, Lan R, Liu Z, Qin Z, Wang H, Liu Z (2021) Mitosis detection techniques in H&E stained breast cancer pathological images: a comprehensive review. Comput Electr Eng 91:107038CrossRef Pan X, Lu Y, Lan R, Liu Z, Qin Z, Wang H, Liu Z (2021) Mitosis detection techniques in H&E stained breast cancer pathological images: a comprehensive review. Comput Electr Eng 91:107038CrossRef
29.
go back to reference Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef
30.
go back to reference Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212 Mnih V, Heess N, Graves A (2014) Recurrent models of visual attention. In: Advances in neural information processing systems, pp 2204–2212
31.
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press
32.
go back to reference Barto AG, Sutton RS, Anderson CW (2020) Looking back on the actor-critic architecture. IEEE Trans Syst Man Cybern Syst 51(1):40–50CrossRef Barto AG, Sutton RS, Anderson CW (2020) Looking back on the actor-critic architecture. IEEE Trans Syst Man Cybern Syst 51(1):40–50CrossRef
34.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, ..., Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow. org (2015). URL https://www.tensorflow.org Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, ..., Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow. org (2015). URL https://​www.​tensorflow.​org
35.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
36.
go back to reference Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495CrossRef
Metadata
Title
A sequential attention interface with a dense reward function for mitosis detection
Authors
Maxwell Hwang
Cai Wu
Wei-Cheng Jiang
Wei-Chen Hung
Publication date
10-04-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01549-z

Other articles of this Issue 9/2022

International Journal of Machine Learning and Cybernetics 9/2022 Go to the issue