Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2022

26-04-2022 | Original Article

Restricted subgradient descend method for sparse signal learning

Authors: Jiajun Wen, Wai Keung Wong, Xiao-Li Hu, Honglin Chu, Zhihui Lai

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sparse signal learning is essentially a sparse solution optimization problem. This technique is especially applicable to the field of signal recovery, e.g. image reconstruction. Such a problem can be solved by the gradient or subgradient descend method. However, conventional method normally needs to introduce extra quadratic term to construct complex objective function, whose solution costs many iteration steps. To address this problem, this paper proposes a novel method called restricted subgradient descend to learn the sparse signals. Our idea is based on the fact that the subgradient of 1-norm function exits at any n-dimensional point, and such a function even can obtain the gradient on the point without zero coordinate components. Thus, to decrease the objective function with regard to 1-norm value, the gradient or subgradient direction can be used to search next update of estimation, which facilitates the learning of the proposed method for high quality sparse solution with quick convergence time. Specifically, two algorithms are proposed, among which the first one uses merely restricted subspace projection scheme and the refined one is based on an improved version of the pivot step of simplex algorithm. It is analyzed that the refined algorithm is able to learn exactly the source sparse signal in finite iteration steps if the subgradient condition is satisfied. This theoretical result is also verified by numerical simulation with good experimental results compared with other state-of-the-art sparse signal learning algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Han N, Wu J, Liang Y, Fang X, Wong WK, Teng S (2018) Low-rank and sparse embedding for dimensionality reduction. Neural Netw 108:202–216MATHCrossRef Han N, Wu J, Liang Y, Fang X, Wong WK, Teng S (2018) Low-rank and sparse embedding for dimensionality reduction. Neural Netw 108:202–216MATHCrossRef
2.
go back to reference Zhao Y, He X, Huang T, Huang J (2018) Smoothing inertial projection neural network for minimization \(L_{p-q}\) in sparse signal reconstruction. Neural Netw 99:31–41MATH Zhao Y, He X, Huang T, Huang J (2018) Smoothing inertial projection neural network for minimization \(L_{p-q}\) in sparse signal reconstruction. Neural Netw 99:31–41MATH
3.
go back to reference Fang X, Xu Y, Li X, Lai Z, Teng S, Fei L (2017) Orthogonal self-guided similarity preserving projection for classification and clustering. Neural Netw 88:1–8MATHCrossRef Fang X, Xu Y, Li X, Lai Z, Teng S, Fei L (2017) Orthogonal self-guided similarity preserving projection for classification and clustering. Neural Netw 88:1–8MATHCrossRef
4.
go back to reference Kafashana M, Nandi A, Ching S (2016) Relating observability and compressed sensing of time-varying signals in recurrent linear networks. Neural Netw 83:11–20CrossRef Kafashana M, Nandi A, Ching S (2016) Relating observability and compressed sensing of time-varying signals in recurrent linear networks. Neural Netw 83:11–20CrossRef
5.
go back to reference Vidya L, Vivekanand V, Shyamkumar U, Deepak M (2015) RBF-network based sparse signal recovery algorithm for compressed sensing reconstruction. Neural Netw 63:66–78MATHCrossRef Vidya L, Vivekanand V, Shyamkumar U, Deepak M (2015) RBF-network based sparse signal recovery algorithm for compressed sensing reconstruction. Neural Netw 63:66–78MATHCrossRef
6.
go back to reference Yang J, Zhang L, Xu Y, Yang J-Y (2012) Beyond sparsity: the role of \(l_1\)-optimizer in pattern classification. Pattern Recogn 45:1104–1118MATH Yang J, Zhang L, Xu Y, Yang J-Y (2012) Beyond sparsity: the role of \(l_1\)-optimizer in pattern classification. Pattern Recogn 45:1104–1118MATH
7.
go back to reference Pham D-S (2015) On group-wise \(l_p\) regularization: theory and efficient algorithms. Pattern Recogn 48:3728–3738MATH Pham D-S (2015) On group-wise \(l_p\) regularization: theory and efficient algorithms. Pattern Recogn 48:3728–3738MATH
8.
go back to reference Abiantun R, Xu FJ, Prabhu U, Savvides M (2019) SSR2: sparse signal recovery for single-image super-resolution on faces with extreme low resolutions. Pattern Recogn 90:308–324CrossRef Abiantun R, Xu FJ, Prabhu U, Savvides M (2019) SSR2: sparse signal recovery for single-image super-resolution on faces with extreme low resolutions. Pattern Recogn 90:308–324CrossRef
9.
go back to reference Hu X-L, Wen J, Lai Z, Wong WK, Shen L (2019) Binary sparse signal recovery algorithms based on logic observation. Pattern Recogn 90:147–160CrossRef Hu X-L, Wen J, Lai Z, Wong WK, Shen L (2019) Binary sparse signal recovery algorithms based on logic observation. Pattern Recogn 90:147–160CrossRef
10.
go back to reference Wang M, Yu J, Ning Z-H, Xiao C-B (2021) Compressed sensing using generative models based on fisher information. Int J Mach Learn Cybern 12:2747–2759 Wang M, Yu J, Ning Z-H, Xiao C-B (2021) Compressed sensing using generative models based on fisher information. Int J Mach Learn Cybern 12:2747–2759
11.
go back to reference Li G, Yan Z (2019) Reconstruction of sparse signals via neurodynamic optimization. International Int J Mach Learn Cybern 10:15–26 Li G, Yan Z (2019) Reconstruction of sparse signals via neurodynamic optimization. International Int J Mach Learn Cybern 10:15–26
15.
go back to reference Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inf Theory 52:5406–5425MathSciNetMATHCrossRef Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inf Theory 52:5406–5425MathSciNetMATHCrossRef
16.
go back to reference Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509MathSciNetMATHCrossRef Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509MathSciNetMATHCrossRef
17.
go back to reference Tropp J, Gilbert A (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MathSciNetMATHCrossRef Tropp J, Gilbert A (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MathSciNetMATHCrossRef
19.
go back to reference Chambolle A, DeVore RA, Lee NY, Lucier BJ (1998) Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Process 7:319–335MathSciNetMATHCrossRef Chambolle A, DeVore RA, Lee NY, Lucier BJ (1998) Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Process 7:319–335MathSciNetMATHCrossRef
20.
21.
go back to reference Daubechies I, Defrise M, Mol CD (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57:1413–1457MathSciNetMATHCrossRef Daubechies I, Defrise M, Mol CD (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math 57:1413–1457MathSciNetMATHCrossRef
22.
go back to reference Hale E, Yin W, Zhang Y (2007) A fixed-point continuation method for \(l_1\)-regularized minimization with applications to compressed sensing, CAAM Technical report TR07-07. Rice University, Houston, TX Hale E, Yin W, Zhang Y (2007) A fixed-point continuation method for \(l_1\)-regularized minimization with applications to compressed sensing, CAAM Technical report TR07-07. Rice University, Houston, TX
23.
go back to reference Vonesch C, Unser M (2007) Fast iterative thresholding algorithm for wavelet-regularized deconvolution. In: Proceedings of the SPIE optics and photonics 2007 conference on mathematical methods: wavelet XII, Vol. 6701, San Diego, CA, pp 1–5 Vonesch C, Unser M (2007) Fast iterative thresholding algorithm for wavelet-regularized deconvolution. In: Proceedings of the SPIE optics and photonics 2007 conference on mathematical methods: wavelet XII, Vol. 6701, San Diego, CA, pp 1–5
24.
go back to reference Wright SJ, Nowak RD, Figueiredo MAT (2008) Sparse reconstruction by separable approximation. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP 2008), pp 3373–3376 Wright SJ, Nowak RD, Figueiredo MAT (2008) Sparse reconstruction by separable approximation. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP 2008), pp 3373–3376
25.
go back to reference Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Image Sci 2(1):183–202MathSciNetMATHCrossRef Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Image Sci 2(1):183–202MathSciNetMATHCrossRef
26.
go back to reference Nesterov YE (1983) A method for solving the convex programming problem with convergence rate O(1/k 2). Dokl Akad Nauk SSSR 269:543–547 ((in Russian))MathSciNet Nesterov YE (1983) A method for solving the convex programming problem with convergence rate O(1/k 2). Dokl Akad Nauk SSSR 269:543–547 ((in Russian))MathSciNet
27.
28.
go back to reference Osher S, Mao Y, Dong B, Yin W (2008) Fast linearized bregman iteration for compressed sensing and sparse denoising, UCLA CAM Report (08-37) Osher S, Mao Y, Dong B, Yin W (2008) Fast linearized bregman iteration for compressed sensing and sparse denoising, UCLA CAM Report (08-37)
29.
go back to reference Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for \(l_1\)- minimization with applications to compressed sensing. SIAM J Imaging Sci 1:143–168MathSciNetMATH Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for \(l_1\)- minimization with applications to compressed sensing. SIAM J Imaging Sci 1:143–168MathSciNetMATH
30.
go back to reference Liu H, Peng J (2018) Sparse signal recovery via alternating projection method. Signal Process 143:161–170CrossRef Liu H, Peng J (2018) Sparse signal recovery via alternating projection method. Signal Process 143:161–170CrossRef
31.
32.
go back to reference Huang S, Tran TD (2019) Sparse signal recovery via generalized entropy functions minimization. IEEE Trans Signal Process 67(5):1322–1337MathSciNetMATHCrossRef Huang S, Tran TD (2019) Sparse signal recovery via generalized entropy functions minimization. IEEE Trans Signal Process 67(5):1322–1337MathSciNetMATHCrossRef
33.
go back to reference Wang S, Rahnavard N (2018) A framework for clustered and skewed sparse signal recovery. IEEE Trans Signal Process 66(15):3972–3986MathSciNetMATHCrossRef Wang S, Rahnavard N (2018) A framework for clustered and skewed sparse signal recovery. IEEE Trans Signal Process 66(15):3972–3986MathSciNetMATHCrossRef
34.
go back to reference Ghayem F, Sadeghi M, Babaie-Zadeh M, Chatterjee S, Skoglund M, Jutten C (2018) Sparse signal recovery using iterative proximal projection. IEEE Trans Signal Process 66(4):879–894MathSciNetMATHCrossRef Ghayem F, Sadeghi M, Babaie-Zadeh M, Chatterjee S, Skoglund M, Jutten C (2018) Sparse signal recovery using iterative proximal projection. IEEE Trans Signal Process 66(4):879–894MathSciNetMATHCrossRef
35.
go back to reference Yang C, Shen X, Ma H, Gu Y, So HC (2018) Sparse recovery conditions and performance bounds for \(\ell _p\)-minimization. IEEE Trans Signal Process 66(19):5014–5028MathSciNetMATH Yang C, Shen X, Ma H, Gu Y, So HC (2018) Sparse recovery conditions and performance bounds for \(\ell _p\)-minimization. IEEE Trans Signal Process 66(19):5014–5028MathSciNetMATH
36.
go back to reference Muthukrishnan S (2005) Data streams: algorithms and applications. Now Publishers, Boston, MAMATHCrossRef Muthukrishnan S (2005) Data streams: algorithms and applications. Now Publishers, Boston, MAMATHCrossRef
37.
go back to reference Zhang H, Yin W, Cheng L (2015) Necessary and sufficient conditions of solution uniqueness in 1-norm minimization. J Optim Theory Appl 164:109–122MathSciNetMATHCrossRef Zhang H, Yin W, Cheng L (2015) Necessary and sufficient conditions of solution uniqueness in 1-norm minimization. J Optim Theory Appl 164:109–122MathSciNetMATHCrossRef
38.
go back to reference Hu X-L, Wen J, Wong WK, Tong L, Cui J (2018) On uniqueness of sparse signal recovery. Signal Process 150:66–74CrossRef Hu X-L, Wen J, Wong WK, Tong L, Cui J (2018) On uniqueness of sparse signal recovery. Signal Process 150:66–74CrossRef
41.
go back to reference Candes EJ (2008) The restricted isometry property and its implication for compressed sensing. C R Acad Sci I(346):589–592MathSciNetMATH Candes EJ (2008) The restricted isometry property and its implication for compressed sensing. C R Acad Sci I(346):589–592MathSciNetMATH
42.
go back to reference Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, Cambridge
43.
go back to reference Li B, Shen Y, Rajan S, Kirubarajan T (2015) Theoretical results for sparse signal recovery with noises using generalized OMP algorithm. Signal Process 117:270–278CrossRef Li B, Shen Y, Rajan S, Kirubarajan T (2015) Theoretical results for sparse signal recovery with noises using generalized OMP algorithm. Signal Process 117:270–278CrossRef
44.
go back to reference Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via \(l_1\) minimization. Proc Natl Acad Sci USA 100:2197–2202MathSciNetMATH Donoho DL, Elad M (2003) Optimally sparse representation in general (nonorthogonal) dictionaries via \(l_1\) minimization. Proc Natl Acad Sci USA 100:2197–2202MathSciNetMATH
45.
go back to reference Zhao J, Song R, Zhao J, Zhu W-P (2015) New conditions for uniformly recovering sparse signals via orthogonal matching pursuit. Signal Process 106:106–113CrossRef Zhao J, Song R, Zhao J, Zhu W-P (2015) New conditions for uniformly recovering sparse signals via orthogonal matching pursuit. Signal Process 106:106–113CrossRef
46.
go back to reference Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton
47.
go back to reference Bertsekas DP (1999) Nonlinear programming, 2d edition, Athena Scientific Bertsekas DP (1999) Nonlinear programming, 2d edition, Athena Scientific
48.
go back to reference Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge
49.
go back to reference Golub G, Van Loan CF (1996) Matrix computations. The Johns Hopkins University Press, Baltimore Golub G, Van Loan CF (1996) Matrix computations. The Johns Hopkins University Press, Baltimore
Metadata
Title
Restricted subgradient descend method for sparse signal learning
Authors
Jiajun Wen
Wai Keung Wong
Xiao-Li Hu
Honglin Chu
Zhihui Lai
Publication date
26-04-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01551-5

Other articles of this Issue 9/2022

International Journal of Machine Learning and Cybernetics 9/2022 Go to the issue