Skip to main content
Top
Published in: Journal of Intelligent Manufacturing 4/2022

23-11-2020

A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing

Authors: Yi Zhang, Peng Peng, Chongdang Liu, Yanyan Xu, Heming Zhang

Published in: Journal of Intelligent Manufacturing | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fault detection is one of the most important research topics to guarantee safe operation and product quality consistency especially in the batch process of semiconductor manufacturing. However, the imbalanced fault data bring great challenges to extract the high nonlinearity and inherently time-varying dynamics of the batch process. Motivated by these, we propose a sequential oversampling discrimination approach for imbalanced batch process fault detection. Especially, different from the traditional oversampling methods, which extract temporal features from the whole process, we transform a whole batch sequence into multiple fixed-length sequences each batch by a sliding window, to extract the robust time-varying dynamics features. Then, an oversampling neural network is performed to balance both sequences of minority and majority classes. The needed sequences of the minority class are generated by an improved combination model of variational auto-encoder and generative adversarial network. Finally, a simplified sequential neural network is learned by the balanced-class sequences to perform the discrimination. We conduct extensive experiments based on two datasets of semiconductor manufacturing. One is a benchmark dataset and the other is a dataset from a real production line. The results achieved significant improvement, compared with other state-of-art fault detection methods and oversampling techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cabrera, D., Sancho, F., Long, J., Sánchez, R., Zhang, S., Cerrada, M., et al. (2019). Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery. IEEE Access, 7, 70643–70653.CrossRef Cabrera, D., Sancho, F., Long, J., Sánchez, R., Zhang, S., Cerrada, M., et al. (2019). Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery. IEEE Access, 7, 70643–70653.CrossRef
go back to reference Cao, H., Li, X. L., Woon, D. Y. K., & Ng, S. K. (2013). Integrated oversampling for imbalanced time series classification. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2809–2822.CrossRef Cao, H., Li, X. L., Woon, D. Y. K., & Ng, S. K. (2013). Integrated oversampling for imbalanced time series classification. IEEE Transactions on Knowledge and Data Engineering, 25(12), 2809–2822.CrossRef
go back to reference Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.CrossRef Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.CrossRef
go back to reference Chen, Z., Cao, Y., Ding, S. X., Zhang, K., Koenings, T., Peng, T., et al. (2019). A distributed canonical correlation analysis-based fault detection method for plant-wide process monitoring. IEEE Transactions on Industrial Informatics, 15(5), 2710–2720.CrossRef Chen, Z., Cao, Y., Ding, S. X., Zhang, K., Koenings, T., Peng, T., et al. (2019). A distributed canonical correlation analysis-based fault detection method for plant-wide process monitoring. IEEE Transactions on Industrial Informatics, 15(5), 2710–2720.CrossRef
go back to reference Cheng, F., He, Q. P., & Zhao, J. (2019). A novel process monitoring approach based on variational recurrent autoencoder. Computers & Chemical Engineering, 129, 106515.CrossRef Cheng, F., He, Q. P., & Zhao, J. (2019). A novel process monitoring approach based on variational recurrent autoencoder. Computers & Chemical Engineering, 129, 106515.CrossRef
go back to reference Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. Neural and Evolutionary Computing. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. Neural and Evolutionary Computing.
go back to reference Fajardo, V.A., Findlay, D., Houmanfar, R., Jaiswal, C., Liang, J., & Xie, H. (2018). Vos: A method for variational oversampling of imbalanced data. Machine Learning. Fajardo, V.A., Findlay, D., Houmanfar, R., Jaiswal, C., Liang, J., & Xie, H. (2018). Vos: A method for variational oversampling of imbalanced data. Machine Learning.
go back to reference Feng, Y., Zhou, M., & Tong, X. (2020). Imbalanced classification: An objective-oriented review. Methodology. Feng, Y., Zhou, M., & Tong, X. (2020). Imbalanced classification: An objective-oriented review. Methodology.
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2672–2680. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27, 2672–2680.
go back to reference Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data. Expert Systems With Applications, 73(73), 220–239.CrossRef Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data. Expert Systems With Applications, 73(73), 220–239.CrossRef
go back to reference He, H., Bai, Y., Garcia, E.A., & Li, S. (2008). Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). IEEE. He, H., Bai, Y., Garcia, E.A., & Li, S. (2008). Adasyn: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322–1328). IEEE.
go back to reference Jiang, Q., Yan, S., Yan, X., Yi, H., & Gao, F. (2019). Data-driven 2d deep correlated representation learning for nonlinear batch process monitoring. IEEE Transactions on Industrial Informatics. Jiang, Q., Yan, S., Yan, X., Yi, H., & Gao, F. (2019). Data-driven 2d deep correlated representation learning for nonlinear batch process monitoring. IEEE Transactions on Industrial Informatics.
go back to reference Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 27.CrossRef Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1), 27.CrossRef
go back to reference Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4), 307–392.CrossRef Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4), 307–392.CrossRef
go back to reference Lee, Y. O., Jo, J., & Hwang, J. (2017). Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In 2017 IEEE international conference on big data (big data) (pp. 3248–3253). IEEE. Lee, Y. O., Jo, J., & Hwang, J. (2017). Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In 2017 IEEE international conference on big data (big data) (pp. 3248–3253). IEEE.
go back to reference Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 42.CrossRef Leevy, J. L., Khoshgoftaar, T. M., Bauder, R. A., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 42.CrossRef
go back to reference Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17), 1–5. Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17), 1–5.
go back to reference Li, M., Xiong, A., Wang, L., Deng, S., & Ye, J. (2020). Aco resampling: Enhancing the performance of oversampling methods for class imbalance classification. Knowledge-Based Systems, 196, 105818.CrossRef Li, M., Xiong, A., Wang, L., Deng, S., & Ye, J. (2020). Aco resampling: Enhancing the performance of oversampling methods for class imbalance classification. Knowledge-Based Systems, 196, 105818.CrossRef
go back to reference Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class imbalance problem. Encyclopedia of Machine Learning, 2011, 231–235. Ling, C. X., & Sheng, V. S. (2008). Cost-sensitive learning and the class imbalance problem. Encyclopedia of Machine Learning, 2011, 231–235.
go back to reference Liu, C., Zhang, L., Niu, J., Yao, R., & Wu, C. (2020). Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism. Neurocomputing. Liu, C., Zhang, L., Niu, J., Yao, R., & Wu, C. (2020). Intelligent prognostics of machining tools based on adaptive variational mode decomposition and deep learning method with attention mechanism. Neurocomputing.
go back to reference Liu, Z., Zhang, D., Jia, W., Lin, X., & Liu, H. (2020). An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction. Journal of Intelligent Manufacturing, 31(6), 1511–1529.CrossRef Liu, Z., Zhang, D., Jia, W., Lin, X., & Liu, H. (2020). An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction. Journal of Intelligent Manufacturing, 31(6), 1511–1529.CrossRef
go back to reference Lopez, V., Fernandez, A., Garcia, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250(250), 113–141.CrossRef Lopez, V., Fernandez, A., Garcia, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250(250), 113–141.CrossRef
go back to reference Luo, J., Huang, J., & Li, H .(2020). A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. Journal of Intelligent Manufacturing. Luo, J., Huang, J., & Li, H .(2020). A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis. Journal of Intelligent Manufacturing.
go back to reference Mao, W., Liu, Y., Ding, L., & Li, Y. (2019). Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study. IEEE Access, 7, 9515–9530.CrossRef Mao, W., Liu, Y., Ding, L., & Li, Y. (2019). Imbalanced fault diagnosis of rolling bearing based on generative adversarial network: A comparative study. IEEE Access, 7, 9515–9530.CrossRef
go back to reference Peng, P., Zhang, W., Zhang, Y., Xu, Y., Wang, H., & Zhang, H. (2020). Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis. Neurocomputing, 407, 232–245.CrossRef Peng, P., Zhang, W., Zhang, Y., Xu, Y., Wang, H., & Zhang, H. (2020). Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis. Neurocomputing, 407, 232–245.CrossRef
go back to reference Penumuru, D. P., Muthuswamy, S., & Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31(5), 1229–1241.CrossRef Penumuru, D. P., Muthuswamy, S., & Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31(5), 1229–1241.CrossRef
go back to reference Rezk, N. M., Purnaprajna, M., Nordstrom, T., & Ul-Abdin, Z. (2020). Recurrent neural networks: An embedded computing perspective. IEEE Access, 8, 57967–57996.CrossRef Rezk, N. M., Purnaprajna, M., Nordstrom, T., & Ul-Abdin, Z. (2020). Recurrent neural networks: An embedded computing perspective. IEEE Access, 8, 57967–57996.CrossRef
go back to reference Said, M., Kb, Abdellafou, & Taouali, O. (2020). Machine learning technique for data-driven fault detection of nonlinear processes. Journal of Intelligent Manufacturing, 31(4), 865–884.CrossRef Said, M., Kb, Abdellafou, & Taouali, O. (2020). Machine learning technique for data-driven fault detection of nonlinear processes. Journal of Intelligent Manufacturing, 31(4), 865–884.CrossRef
go back to reference Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., & Meng, D. (2019). Meta-weight-net: Learning an explicit mapping for sample weighting. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems 32 (pp. 1919–1930). Curran Associates, Inc. Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., & Meng, D. (2019). Meta-weight-net: Learning an explicit mapping for sample weighting. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems 32 (pp. 1919–1930). Curran Associates, Inc.
go back to reference Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. In Advances in neural information processing systems (pp. 3483–3491). Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep conditional generative models. In Advances in neural information processing systems (pp. 3483–3491).
go back to reference Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., & Yang, Y. (2020). Advae: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection. Knowledge-Based Systems, 190, 105187.CrossRef Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., & Yang, Y. (2020). Advae: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection. Knowledge-Based Systems, 190, 105187.CrossRef
go back to reference Wise, B. M., Gallagher, N. B., Butler, S. W., White, D. D., & Barna, G. G. (1999). A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics, 13(3–4), 379–396.CrossRef Wise, B. M., Gallagher, N. B., Butler, S. W., White, D. D., & Barna, G. G. (1999). A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics, 13(3–4), 379–396.CrossRef
go back to reference Wu, Q., Ding, K., & Huang, B. (2020). Approach for fault prognosis using recurrent neural network. Journal of Intelligent Manufacturing, 31(7), 1621–1633.CrossRef Wu, Q., Ding, K., & Huang, B. (2020). Approach for fault prognosis using recurrent neural network. Journal of Intelligent Manufacturing, 31(7), 1621–1633.CrossRef
go back to reference Xu, Q., Lu, S., Jia, W., & Jiang, C. (2020a). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing, 31(6), 1467–1481.CrossRef Xu, Q., Lu, S., Jia, W., & Jiang, C. (2020a). Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning. Journal of Intelligent Manufacturing, 31(6), 1467–1481.CrossRef
go back to reference Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020b). A hybrid sampling algorithm combining m-smote and ENN based on random forest for medical imbalanced data. Journal of Biomedical Informatics, 103465. Xu, Z., Shen, D., Nie, T., & Kou, Y. (2020b). A hybrid sampling algorithm combining m-smote and ENN based on random forest for medical imbalanced data. Journal of Biomedical Informatics, 103465.
go back to reference Yen, S., & Lee, Y. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems With Applications, 36(3), 5718–5727.CrossRef Yen, S., & Lee, Y. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems With Applications, 36(3), 5718–5727.CrossRef
go back to reference Zhang, S., & Zhao, C. (2019). Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly. IEEE Transactions on Industrial Electronics, 66(5), 3773–3783.CrossRef Zhang, S., & Zhao, C. (2019). Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly. IEEE Transactions on Industrial Electronics, 66(5), 3773–3783.CrossRef
go back to reference Zhang, Y., Peng, P., Liu, C., & Zhang, H. (2019). Anomaly detection for industry product quality inspection based on Gaussian restricted Boltzmann machine. In 2019 IEEE international conference on systems, man and cybernetics (SMC) (pp. 1–6). https://doi.org/10.1109/SMC.2019.8914524. Zhang, Y., Peng, P., Liu, C., & Zhang, H. (2019). Anomaly detection for industry product quality inspection based on Gaussian restricted Boltzmann machine. In 2019 IEEE international conference on systems, man and cybernetics (SMC) (pp. 1–6). https://​doi.​org/​10.​1109/​SMC.​2019.​8914524.
go back to reference Zhao, J., Jin, J., Chen, S., Zhang, R., Yu, B., & Liu, Q. (2020). A weighted hybrid ensemble method for classifying imbalanced data. Knowledge-Based Systems, 203, 106087.CrossRef Zhao, J., Jin, J., Chen, S., Zhang, R., Yu, B., & Liu, Q. (2020). A weighted hybrid ensemble method for classifying imbalanced data. Knowledge-Based Systems, 203, 106087.CrossRef
go back to reference Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., et al. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009–1023.CrossRef Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., et al. (2020). Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Information Sciences, 512, 1009–1023.CrossRef
go back to reference Zhou, F., Yang, S., Fujita, H., Chen, D., & Wen, C. (2020). Deep learning fault diagnosis method based on global optimization gan for unbalanced data. Knowledge-Based Systems, 187, 104837.CrossRef Zhou, F., Yang, S., Fujita, H., Chen, D., & Wen, C. (2020). Deep learning fault diagnosis method based on global optimization gan for unbalanced data. Knowledge-Based Systems, 187, 104837.CrossRef
go back to reference Zhu, J., & Gao, F. (2018). Similar batch process monitoring with orthogonal subspace alignment. IEEE Transactions on Industrial Electronics, 65, 8173–8183.CrossRef Zhu, J., & Gao, F. (2018). Similar batch process monitoring with orthogonal subspace alignment. IEEE Transactions on Industrial Electronics, 65, 8173–8183.CrossRef
Metadata
Title
A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing
Authors
Yi Zhang
Peng Peng
Chongdang Liu
Yanyan Xu
Heming Zhang
Publication date
23-11-2020
Publisher
Springer US
Published in
Journal of Intelligent Manufacturing / Issue 4/2022
Print ISSN: 0956-5515
Electronic ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-020-01716-5

Other articles of this Issue 4/2022

Journal of Intelligent Manufacturing 4/2022 Go to the issue

Premium Partners