Skip to main content
Top

2020 | OriginalPaper | Chapter

A Short Note on the Processing of Materials Through Microwave Route

Authors : Gurbhej Singh, Hitesh Vasudev, Hitesh Arora

Published in: Advances in Materials Processing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are various fabrication techniques used for depositing the material over the surface of substrate to enhance the surface properties. The need of surface modification leads to the use of many techniques which are not only economical but also eco-friendly in terms of producing pollution. The microwave route has emerged as one of the tool used for the application of surface engineering, where the materials like ceramics, metals and alloys and various composites can easily be deposited. The microwave route utilizes the heat of the waves, which further melts the material to be deposited on the substrate. In this article, the application of microwave energy in the form of various techniques has been studied for the fabrication of materials by joining, melting and cladding

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Prakash, C., Singh, S., Verma, K., Sidhu, S.S., Singh, S.: Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum 155, 578–584 (2018)CrossRef Prakash, C., Singh, S., Verma, K., Sidhu, S.S., Singh, S.: Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum 155, 578–584 (2018)CrossRef
2.
go back to reference Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Processes 34(4), 357–368 (2019)CrossRef Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Processes 34(4), 357–368 (2019)CrossRef
3.
go back to reference Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials 11(9), 1602 (2018)CrossRef Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials 11(9), 1602 (2018)CrossRef
4.
go back to reference Bhushan, B., Singh, A., Singh, R., Mehta, J.S., Gupta, A., Prakash, C.: Fabrication and characterization of a new range of β-type Ti-Nb-Ta-Zr-xHaP (x = 0, 10) alloy by mechanical alloying and spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27749–27756 (2018) Bhushan, B., Singh, A., Singh, R., Mehta, J.S., Gupta, A., Prakash, C.: Fabrication and characterization of a new range of β-type Ti-Nb-Ta-Zr-xHaP (x = 0, 10) alloy by mechanical alloying and spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27749–27756 (2018)
5.
go back to reference Singh, B., Singh, R., Mehta, J.S., Gupta, A., Singh, M., Singh, S., Prakash, C.: Nano-mechanical characterization of Mg-Zn-Mn-Si alloy fabricated by spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27742–27748 (2018) Singh, B., Singh, R., Mehta, J.S., Gupta, A., Singh, M., Singh, S., Prakash, C.: Nano-mechanical characterization of Mg-Zn-Mn-Si alloy fabricated by spark plasma sintering for biomedical applications. Mater. Today: Proc. 5(14), 27742–27748 (2018)
6.
go back to reference Singh, B.P., Singh, R., Mehta, J.S., Prakash, C.: Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012050, Aug 2017 Singh, B.P., Singh, R., Mehta, J.S., Prakash, C.: Fabrication of biodegradable low elastic porous Mg-Zn-Mn-HA alloy by spark plasma sintering for orthopaedic applications. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012050, Aug 2017
7.
go back to reference Singh, R., Singh, B.P., Gupta, A., Prakash, C.: Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012051, Aug 2017 Singh, R., Singh, B.P., Gupta, A., Prakash, C.: Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 225, no. 1, p. 012051, Aug 2017
8.
go back to reference Lauf, R.J., Bible, D.W., Johnson, A.C., Everliegh, C.A.: 2 to 18 GHz broadband microwave heating systems. Microwave J. 36, 24–27 (1993) Lauf, R.J., Bible, D.W., Johnson, A.C., Everliegh, C.A.: 2 to 18 GHz broadband microwave heating systems. Microwave J. 36, 24–27 (1993)
9.
go back to reference Ku, H.S., Siores, E., Ball, J.A.R.: Review—microwave processing of materials: Part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2001) Ku, H.S., Siores, E., Ball, J.A.R.: Review—microwave processing of materials: Part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2001)
10.
go back to reference Thostenson. E.T., Chou. T.: Microwave processing: fundamentals and applications. Composites: Part A 30, 1055–1071 (1999) Thostenson. E.T., Chou. T.: Microwave processing: fundamentals and applications. Composites: Part A 30, 1055–1071 (1999)
11.
go back to reference Menendez, J.A., Arenillas, A., Fidalgo, B.: Microwave heating processes involving carbon materials. Fuel Process. Technol. 91, 1–8 (2010)CrossRef Menendez, J.A., Arenillas, A., Fidalgo, B.: Microwave heating processes involving carbon materials. Fuel Process. Technol. 91, 1–8 (2010)CrossRef
12.
go back to reference Zhou. J., Shi, C., Mei, B.: Research on the technology and the mechanical properties of the microwave processing of polymer. J. Mater. Process. Technol. 137, 156–158 (2003) Zhou. J., Shi, C., Mei, B.: Research on the technology and the mechanical properties of the microwave processing of polymer. J. Mater. Process. Technol. 137, 156–158 (2003)
13.
go back to reference Bruce, R.W., Fliflet, A.W., Huey, H.E., Stephenson, C.: Microwave sintering and melting of titanium powder for low-cost processing. Key Eng. Mater. 436, 131–140 (2010)CrossRef Bruce, R.W., Fliflet, A.W., Huey, H.E., Stephenson, C.: Microwave sintering and melting of titanium powder for low-cost processing. Key Eng. Mater. 436, 131–140 (2010)CrossRef
14.
go back to reference Ku. H.S., Siores, E., Ball, J.A.R., Review—microwave processing of materials: part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2011) Ku. H.S., Siores, E., Ball, J.A.R., Review—microwave processing of materials: part I. The Honking Institution of Engineers Transactions, 8, 31–37 (2011)
15.
go back to reference Leonelli, C., Veronesi, P., Denti, L., Gatto, A., Luliano, L.: Microwave assisted sintering of green metal parts. J. Mater. Process. Technol. 205, 489–496 (2008)CrossRef Leonelli, C., Veronesi, P., Denti, L., Gatto, A., Luliano, L.: Microwave assisted sintering of green metal parts. J. Mater. Process. Technol. 205, 489–496 (2008)CrossRef
16.
go back to reference Huang, Z., Gotoh, M., Hirose, Y.: Improving sinter-ability of ceramics using hybrid microwave heating. J. Mater. Process. Technol. 209, 2446–2452 (2009)CrossRef Huang, Z., Gotoh, M., Hirose, Y.: Improving sinter-ability of ceramics using hybrid microwave heating. J. Mater. Process. Technol. 209, 2446–2452 (2009)CrossRef
17.
go back to reference Singh, S., Gupta, D., Jain, V., Sharma, A.K.: Microwave processing of materials and applications in manufacturing industries: a review, Mater. Manuf. Process. (2015) Singh, S., Gupta, D., Jain, V., Sharma, A.K.: Microwave processing of materials and applications in manufacturing industries: a review, Mater. Manuf. Process. (2015)
18.
go back to reference Thostenson, E.T., Chou, T.W.: Microwave processing: fundamentals and applications. Compos. A 30, 1055–1071 (1999)CrossRef Thostenson, E.T., Chou, T.W.: Microwave processing: fundamentals and applications. Compos. A 30, 1055–1071 (1999)CrossRef
19.
go back to reference Zhu, S., Fahrenholtz, W.G., Hilmas, G.E. et al.: Microwave sintering of a ZrB2–B4C particulate ceramic composite. Compos. A, 39, 449–453 (2008); Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990) Zhu, S., Fahrenholtz, W.G., Hilmas, G.E. et al.: Microwave sintering of a ZrB2–B4C particulate ceramic composite. Compos. A, 39, 449–453 (2008); Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990)
20.
go back to reference Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990)CrossRef Mijovic, J., Wijaya, J.: Review of cure of polymers and composites by microwave energy. Polym. Compos. 11(3), 184–191 (1990)CrossRef
21.
go back to reference Agrawal, D.: Microwave sintering of ceramics, composites, metals, and transparent materials. J. Mater. Edu. 19(4, 5 & 6), 49–58 (1999) Agrawal, D.: Microwave sintering of ceramics, composites, metals, and transparent materials. J. Mater. Edu. 19(4, 5 & 6), 49–58 (1999)
22.
go back to reference Gupta, D., Sharma, A.K.: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear 271(9), 1642–1650 (2011)CrossRef Gupta, D., Sharma, A.K.: Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear 271(9), 1642–1650 (2011)CrossRef
23.
go back to reference Zafar, S., Sharma, A.K.: On friction and wear behaviour of WC-12Co microwave clad. Tribol. Trans. 58, 584–591 (2015)CrossRef Zafar, S., Sharma, A.K.: On friction and wear behaviour of WC-12Co microwave clad. Tribol. Trans. 58, 584–591 (2015)CrossRef
24.
go back to reference Prasad, A., Gupta, D.: Microwave cladding: Emerging innovative cladding process. Emerg. Trends Eng. Technol. 271 (2013) Prasad, A., Gupta, D.: Microwave cladding: Emerging innovative cladding process. Emerg. Trends Eng. Technol. 271 (2013)
25.
go back to reference Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys. Compd. 494, 175–189 (2010)CrossRef Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys. Compd. 494, 175–189 (2010)CrossRef
26.
go back to reference Vasudev, H., Thakur, L., Singh, H.: A review on tribo-corrosion of coatings in glass manufacturing industry and performance of coating techniques against high temperature corrosion and wear. i-Manager’s J. Materi. Sci. 5, 38–48 (2017) Vasudev, H., Thakur, L., Singh, H.: A review on tribo-corrosion of coatings in glass manufacturing industry and performance of coating techniques against high temperature corrosion and wear. i-Manager’s J. Materi. Sci. 5, 38–48 (2017)
27.
go back to reference Vasudev, H., Thakur, L., Bansal, A., Singh, H., Zafar, S.: High temperature oxidation and erosion behaviour of HVOF sprayed bilayer Alloy-718/NiCrAlY coating. Surf. Coat. Technol. 362, 366–380 (2019)CrossRef Vasudev, H., Thakur, L., Bansal, A., Singh, H., Zafar, S.: High temperature oxidation and erosion behaviour of HVOF sprayed bilayer Alloy-718/NiCrAlY coating. Surf. Coat. Technol. 362, 366–380 (2019)CrossRef
28.
go back to reference Vasudev, H., Thakur, L., Bansal, A., Singh, H.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Mater. 56(1), 55–63 (2018) Vasudev, H., Thakur, L., Bansal, A., Singh, H.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Mater. 56(1), 55–63 (2018)
29.
go back to reference Bansal, A., Vasudev, H., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express 6(8), 086554 (2019)CrossRef Bansal, A., Vasudev, H., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express 6(8), 086554 (2019)CrossRef
30.
go back to reference Vasudev, H., Singh, G., Bansal, A., Vardhan, S., Thakur, L.: Microwave heating and its applications in surface engineering: a review. Mater. Res. Express 6(10), 102001 (2019)CrossRef Vasudev, H., Singh, G., Bansal, A., Vardhan, S., Thakur, L.: Microwave heating and its applications in surface engineering: a review. Mater. Res. Express 6(10), 102001 (2019)CrossRef
31.
go back to reference Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy. Compd. 824, 153774 (2020)CrossRef Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy. Compd. 824, 153774 (2020)CrossRef
32.
go back to reference Prakash, C., Singh, S., Basak, A., Królczyk, G., Pramanik, A., Lamberti, L., Pruncu, C.I.: Processing of Ti50Nb50–xHAx composites by rapid microwave sintering technique for biomedical applications. J. Mater. Res. Technol. 9(1), 242–252 (2020)CrossRef Prakash, C., Singh, S., Basak, A., Królczyk, G., Pramanik, A., Lamberti, L., Pruncu, C.I.: Processing of Ti50Nb50–xHAx composites by rapid microwave sintering technique for biomedical applications. J. Mater. Res. Technol. 9(1), 242–252 (2020)CrossRef
33.
go back to reference Prakash, C., Singh, S., Sharma, S., Singh, J., Singh, G., Mehta, M., Mittal, M., Kumar, H.: Fabrication of low elastic modulus Ti50Nb30HA20 alloy by rapid microwave sintering technique for biomedical applications. Mater. Today: Proc. 21, 1713–1716 (2020) Prakash, C., Singh, S., Sharma, S., Singh, J., Singh, G., Mehta, M., Mittal, M., Kumar, H.: Fabrication of low elastic modulus Ti50Nb30HA20 alloy by rapid microwave sintering technique for biomedical applications. Mater. Today: Proc. 21, 1713–1716 (2020)
Metadata
Title
A Short Note on the Processing of Materials Through Microwave Route
Authors
Gurbhej Singh
Hitesh Vasudev
Hitesh Arora
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4748-5_10

Premium Partners