Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 6/2017

30-09-2017 | DISCUSSION

A short numerical study on the optimization methods influence on topology optimization

Authors: Susana Rojas-Labanda, Ole Sigmund, Mathias Stolpe

Published in: Structural and Multidisciplinary Optimization | Issue 6/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structural topology optimization problems are commonly defined using continuous design variables combined with material interpolation schemes. One of the challenges for density based topology optimization observed in the review article (Sigmund and Maute Struct Multidiscip Optim 48(6):1031–1055 2013) is the slow convergence that is often encountered in practice, when an almost solid-and-void design is found. The purpose of this forum article is to present some preliminary observations on how designs evolves during the optimization process for different choices of optimization methods. Additionally, the authors want to open a discussion on how to properly define and identify the boundary translation that is often observed in practice. The authors hope that these preliminary observations can open for fruitful discussions and stimulate further investigations concerning slowly moving boundaries. Although the discussion is centered on density based methods it may be equally relevant to level-set and phase-field approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In this manuscript the word solve (in the context of optimization problems) should be understood as finding a point numerically satisfying the KKT conditions within some prescribed tolerances.
 
2
Number of optimization sub-problems solved.
 
3
The KKT condition of IPOPT cannot be obtained with the interface used in these numerical examples, and thus cannot be presented in Fig. 9.
 
Literature
go back to reference Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184(2–4):501–520CrossRefMATH Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184(2–4):501–520CrossRefMATH
go back to reference Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16CrossRefMATH
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):192–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):192–202CrossRef
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654MATH
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer-Verlag, Berlin HeidelbergMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer-Verlag, Berlin HeidelbergMATH
go back to reference Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4):877–900CrossRefMATHMathSciNet Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4):877–900CrossRefMATHMathSciNet
go back to reference Morales JL, Nocedal J, Wu Y (2010) A sequential quadratic programming algorithm with an additional equality constrained phase. J Numer Anal 32(2):553–579CrossRefMATHMathSciNet Morales JL, Nocedal J, Wu Y (2010) A sequential quadratic programming algorithm with an additional equality constrained phase. J Numer Anal 32(2):553–579CrossRefMATHMathSciNet
go back to reference Nocedal J, Wächter R, Waltz RA (2009) Adaptive barrier update strategies for nonlinear interior methods. SIAM J Optim 19(4):1674–1693CrossRefMATHMathSciNet Nocedal J, Wächter R, Waltz RA (2009) Adaptive barrier update strategies for nonlinear interior methods. SIAM J Optim 19(4):1674–1693CrossRefMATHMathSciNet
go back to reference Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52(3):527–547CrossRefMathSciNet Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52(3):527–547CrossRefMathSciNet
go back to reference Rojas-Labanda S, Stolpe M (2016) An efficient second-order SQP method for structural topology optimization. Struct Multidiscip Optim 53(6):1315–1333CrossRefMathSciNet Rojas-Labanda S, Stolpe M (2016) An efficient second-order SQP method for structural topology optimization. Struct Multidiscip Optim 53(6):1315–1333CrossRefMathSciNet
go back to reference Rozvany GIN, Zhou M (1991) The COC algorithm, part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1–3):281–308CrossRef Rozvany GIN, Zhou M (1991) The COC algorithm, part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89(1–3):281–308CrossRef
go back to reference Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):492–526 Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25(4):492–526
go back to reference Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239CrossRefMATH Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239CrossRefMATH
go back to reference Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMATHMathSciNet Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373CrossRefMATHMathSciNet
go back to reference Wächter A, Biegler LT (2006) On the implementation of an interior point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57CrossRefMATHMathSciNet Wächter A, Biegler LT (2006) On the implementation of an interior point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57CrossRefMATHMathSciNet
go back to reference Yamashita H (1998) A globally convergent primal-dual interior point method for constrained optimization. Optim Methods Softw 10(2):2–4CrossRefMATHMathSciNet Yamashita H (1998) A globally convergent primal-dual interior point method for constrained optimization. Optim Methods Softw 10(2):2–4CrossRefMATHMathSciNet
go back to reference Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
Metadata
Title
A short numerical study on the optimization methods influence on topology optimization
Authors
Susana Rojas-Labanda
Ole Sigmund
Mathias Stolpe
Publication date
30-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 6/2017
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1813-2

Other articles of this Issue 6/2017

Structural and Multidisciplinary Optimization 6/2017 Go to the issue

Premium Partners