Skip to main content
Top

2021 | OriginalPaper | Chapter

A Short Review and Investigate Study on Performance of Magneto-Hydrodynamic Using High Reynolds Numbers

Authors : Kiran Kumar Namala, V. Bala Murali Krishna

Published in: Latest Trends in Renewable Energy Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a short review on working phenomena, existing trends, and investigate study on the performance of Magneto-hydrodynamic (MHD) power generation using high Reynolds numbers. The generators used in the MHD power generation are quite different from traditional electric power generation plants in such a way that they operate at high temperatures. Moreover, the MHD generators did not have any rotational parts, hence, no rotational and friction losses with generating elements. Like conventional generators, the MHD generators also rely on moving a conductor through a magnetic field. These use hot conductive plasma or liquid metals as the moving conductor through a magnetic field to generate the electric power. One of the major drawbacks of the plasma MHD power generation is, it requires a very high operating temperature as the ionized working gases at the temperature rating above 2,000 K. In this work, a low-melting-point gallium alloy is used to investigate the per-performance of the MHD power generator using high Reynolds numbers is analyzed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Ambasankaran, Status report on the Indian MHD programme. Indian MHD Power Generation Project, Bhabha Atomic Research Centre C. Ambasankaran, Status report on the Indian MHD programme. Indian MHD Power Generation Project, Bhabha Atomic Research Centre
2.
go back to reference P. Haloi, T.K. Gogoi, Exergy modelling of a coal-fired MHD power plant. in Advances in Applied Mechanical Engineering, pp. 81–89. Springer, Singapore (2020) P. Haloi, T.K. Gogoi, Exergy modelling of a coal-fired MHD power plant. in Advances in Applied Mechanical Engineering, pp. 81–89. Springer, Singapore (2020)
3.
go back to reference P.S. Cicconardi, A. Perna, Performance analysis of integrated systems based on MHD generators. Energy Procedia 45, 1305–1314 (2014)CrossRef P.S. Cicconardi, A. Perna, Performance analysis of integrated systems based on MHD generators. Energy Procedia 45, 1305–1314 (2014)CrossRef
4.
go back to reference P. Haloi, T.K. Gogoi, Energy analysis of a coal-fired MHD power plant. IJRTE 8, 281–285 (2019) P. Haloi, T.K. Gogoi, Energy analysis of a coal-fired MHD power plant. IJRTE 8, 281–285 (2019)
5.
go back to reference S.C. Kaushik, S.S. Verma, A. Chandra, Solar-assisted liquid metal MHD power generation: A state of the art study. Heat Recovery Syst. CHP 15(7), 675–689 (1995)CrossRef S.C. Kaushik, S.S. Verma, A. Chandra, Solar-assisted liquid metal MHD power generation: A state of the art study. Heat Recovery Syst. CHP 15(7), 675–689 (1995)CrossRef
6.
go back to reference K. Shimada, S. Kamiyama, Oscillatory pipe flow of a magnetic fluid in a strong magnetic field. J. Magn. Magn. Mater. 122(1–3), 214–216 (1993)CrossRef K. Shimada, S. Kamiyama, Oscillatory pipe flow of a magnetic fluid in a strong magnetic field. J. Magn. Magn. Mater. 122(1–3), 214–216 (1993)CrossRef
7.
go back to reference R. Deche, Gas dynamic design optimization of the MHD generator. Int J Energy Res 18(9), 813–833 (1994)CrossRef R. Deche, Gas dynamic design optimization of the MHD generator. Int J Energy Res 18(9), 813–833 (1994)CrossRef
8.
go back to reference S. Shuchi, K. Shimada, S. Kamiyama, H. Yamaguchi, Hydrodynamic characteristics of steady magnetic fluid flow in a straight tube by taking into account the non-uniform distri- bution of mass concentration. J. Magn. Magn. Mater. 252, 166–168 (2002)CrossRef S. Shuchi, K. Shimada, S. Kamiyama, H. Yamaguchi, Hydrodynamic characteristics of steady magnetic fluid flow in a straight tube by taking into account the non-uniform distri- bution of mass concentration. J. Magn. Magn. Mater. 252, 166–168 (2002)CrossRef
9.
go back to reference P. Satyamurthy, N. Venkatramani, A.M. Quraishi, A. Mushtaq, Basic design of a prototype liquid metal Magnetohydrodynamic power generator for solar and waste heat. Energy Conversion and Management 40(9), 913–935(1999) P. Satyamurthy, N. Venkatramani, A.M. Quraishi, A. Mushtaq, Basic design of a prototype liquid metal Magnetohydrodynamic power generator for solar and waste heat. Energy Conversion and Management 40(9), 913–935(1999)
10.
go back to reference H. Yamaguchi, X.-D. Niu, X.-R. Zhang, Investigation on a low melting-point-Gallium-alloy MHD power generator. Int. J. Energy Res. 35(3), 209–220 (2011)CrossRef H. Yamaguchi, X.-D. Niu, X.-R. Zhang, Investigation on a low melting-point-Gallium-alloy MHD power generator. Int. J. Energy Res. 35(3), 209–220 (2011)CrossRef
11.
go back to reference J.K. Avlyanov, A.S. Zakirov, H.T. Igamberdiev, A. Mavlyanov, A.T. Mamadalimov, P.K. Khabibulaev, Electro- and thermophysical properties of polyaniline. Synth Metals 41(1–2), 705–709 (1991) J.K. Avlyanov, A.S. Zakirov, H.T. Igamberdiev, A. Mavlyanov, A.T. Mamadalimov, P.K. Khabibulaev, Electro- and thermophysical properties of polyaniline. Synth Metals 41(1–2), 705–709 (1991)
12.
13.
go back to reference P. Surmann, H. Zeyat, Voltammetric analysis using a self-renewable non-mercury electrode. Anal. Bioanal. Chem. 383(6), 1009–1013 (2005)CrossRef P. Surmann, H. Zeyat, Voltammetric analysis using a self-renewable non-mercury electrode. Anal. Bioanal. Chem. 383(6), 1009–1013 (2005)CrossRef
14.
go back to reference R. Ajith Krishnan, B.S. Jinshah, Magnetohydrodynamic Power Generation. Int. J. Sci. Res. Publ. 3(6), 1–11 (2003) R. Ajith Krishnan, B.S. Jinshah, Magnetohydrodynamic Power Generation. Int. J. Sci. Res. Publ. 3(6), 1–11 (2003)
15.
go back to reference N. Harada, N. Kizuka, T. Okamura, H. Yamasaki, S. Shioda, Improvement of enthalpy extraction over 30% using a disk MHD generator with inlet swirl. Energy Convers. Manage. 36(5), 355–364 (1995) N. Harada, N. Kizuka, T. Okamura, H. Yamasaki, S. Shioda, Improvement of enthalpy extraction over 30% using a disk MHD generator with inlet swirl. Energy Convers. Manage. 36(5), 355–364 (1995)
16.
go back to reference N. Harada, L.C. Kien, T. Tashiro, Closed cycle MHD generator using He/Xe working plasma. in 33rd Plasmadynamics and Lasers Conference American Institute of Aeronautics and Astronautics, pp. 1–20. Maui, Hawali (2002) N. Harada, L.C. Kien, T. Tashiro, Closed cycle MHD generator using He/Xe working plasma. in 33rd Plasmadynamics and Lasers Conference American Institute of Aeronautics and Astronautics, pp. 1–20. Maui, Hawali (2002)
17.
go back to reference D. Ognerubov, Y. Listratov, V. Sviridov, O. Zikanov, Magnetohydrodynamic heat exchange in next-generation power plants. in 2015 5th International Youth Conference on Energy (IYCE), pp. 1–7. Pisa, Italy IEEE (2015) D. Ognerubov, Y. Listratov, V. Sviridov, O. Zikanov, Magnetohydrodynamic heat exchange in next-generation power plants. in 2015 5th International Youth Conference on Energy (IYCE), pp. 1–7. Pisa, Italy IEEE (2015)
18.
go back to reference Q. Zhu, Y. li, Marine renewable energy based on the principle of Magneto Hydro Dynamical power generation. in 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 1–7, IEEE (2019) Q. Zhu, Y. li, Marine renewable energy based on the principle of Magneto Hydro Dynamical power generation. in 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 1–7, IEEE (2019)
19.
go back to reference Zhengyongshu, Qiuyingzhu, Yongguoli: Literature review of marine renewable energy uti- lization based on Magnetohydrodynamic power generation. In: 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 1594–1599. Shanghai, China IEEE (2019). Zhengyongshu, Qiuyingzhu, Yongguoli: Literature review of marine renewable energy uti- lization based on Magnetohydrodynamic power generation. In: 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 1594–1599. Shanghai, China IEEE (2019).
20.
go back to reference E. Cosoroaba, B. Fahimi, Magnetohydrodynamics in thermal to electric energy conversion. in 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), pp. 1–1. Miami, USA IEEE (2016) E. Cosoroaba, B. Fahimi, Magnetohydrodynamics in thermal to electric energy conversion. in 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), pp. 1–1. Miami, USA IEEE (2016)
21.
go back to reference D.K. Sarkar, General description of thermal power plants. in Thermal Power Plant. pp. 1–31. Elsevier (2017) D.K. Sarkar, General description of thermal power plants. in Thermal Power Plant. pp. 1–31. Elsevier (2017)
22.
go back to reference K.M. Ewis, A New Approach in Differential transformation method with application on MHD flow in non-Darcy medium between porous parallel plates considering hall current. Adv. Water Resour. 143, 103677 (2020)CrossRef K.M. Ewis, A New Approach in Differential transformation method with application on MHD flow in non-Darcy medium between porous parallel plates considering hall current. Adv. Water Resour. 143, 103677 (2020)CrossRef
23.
go back to reference S.H. Seyedi, B.N. Saray, A.J. Chamkha, Heat and mass transfer investigation of MHD Eyring-Powell flow in a stretching channel with chemical reactions. Physica a 544(124109), 1–13 (2020)MathSciNet S.H. Seyedi, B.N. Saray, A.J. Chamkha, Heat and mass transfer investigation of MHD Eyring-Powell flow in a stretching channel with chemical reactions. Physica a 544(124109), 1–13 (2020)MathSciNet
24.
go back to reference N. Harada, MHD pulsed power generation and applications. in IEEE Conference Record Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Con- ference on Plasma Science and 13th IEEE International Pulsed Power Conference (Cat. No.01CH37255), pp. 249. Las Vegas, USA IEEE (2001) N. Harada, MHD pulsed power generation and applications. in IEEE Conference Record Abstracts. PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Con- ference on Plasma Science and 13th IEEE International Pulsed Power Conference (Cat. No.01CH37255), pp. 249. Las Vegas, USA IEEE (2001)
25.
go back to reference O.M. Al-Habahbeh, M. Al-Saqqa, M. Safi, T. Abo Khater, Review of magnetohydrodynamic pump applications. Alexandria Engineering Journal 55(2), 1347–1358 (2016)CrossRef O.M. Al-Habahbeh, M. Al-Saqqa, M. Safi, T. Abo Khater, Review of magnetohydrodynamic pump applications. Alexandria Engineering Journal 55(2), 1347–1358 (2016)CrossRef
26.
go back to reference X.-D. Niu, H. Yamaguchi, X.-J. Ye, Y. Iwamoto, Characteristics of a MHD power generator using a low-melting-point Gallium alloy. Electr. Eng. 96(1), 37–43 (2012)CrossRef X.-D. Niu, H. Yamaguchi, X.-J. Ye, Y. Iwamoto, Characteristics of a MHD power generator using a low-melting-point Gallium alloy. Electr. Eng. 96(1), 37–43 (2012)CrossRef
27.
go back to reference H. Yamaguchi, X.-D. Niu, X.-R. Zhang, Investigation on a low-melting-point gallium alloy MHD power generator. Int. J. Energy Res. 35, 209–220 (2011)CrossRef H. Yamaguchi, X.-D. Niu, X.-R. Zhang, Investigation on a low-melting-point gallium alloy MHD power generator. Int. J. Energy Res. 35, 209–220 (2011)CrossRef
Metadata
Title
A Short Review and Investigate Study on Performance of Magneto-Hydrodynamic Using High Reynolds Numbers
Authors
Kiran Kumar Namala
V. Bala Murali Krishna
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1186-5_31