Skip to main content
Top
Published in: Acta Mechanica 7/2023

28-03-2023 | Original Paper

A simplified deformation gradient theory and its experimental verification

Authors: Yucheng Zhou, Kefu Huang

Published in: Acta Mechanica | Issue 7/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, materials with nonlocal properties are considered as a continuum model composed of micro-elements with certain volumes. Based on this hypothesis, the deformation and corresponding energy of micro-structure system are studied in detail, and the equivalent governing equations in simplified form are given. In the framework of micro-structure system, a simplified deformation gradient theory (SDG) with two length-scale parameters is obtained by defining the micro-strain and micro-rotation of elements specifically from the perspective of deformation, which has definite physical significance. The generalized strain energy is introduced in the SDG, which gives a new explanation of elastic moduli, and the nonlocal effect parameter is defined to capture nonlocal properties of materials quantitatively. Under certain micro-deformation assumptions, the SDG can be degenerated into couple stress theory, strain gradient theory and classical continuum theory. The nonlocal deformation consists of two branches: one is the macro-deformation of non-uniform materials and the other is the micro-deformation of materials with micro-structures. For the macro-tension of particle reinforced composites, the SDG successfully verifies and predicts the approximatively linear relationship between elastic moduli and particle sizes on the micron scale. Moreover, the theoretical solution to nonlocal micro-torsion based on the SDG agrees well with the experiment results and also predicts the torsion stiffness of cylinder at smaller diameters.
Literature
1.
go back to reference Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J. Phys. D. Appl. Phys. 44(33), 335501 (2011)CrossRef Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J. Phys. D. Appl. Phys. 44(33), 335501 (2011)CrossRef
2.
go back to reference Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: Ii. Experimental verification of deflection models using atomic force microscopy. J. Phys. D. Appl. Phys. 44(33), 335502 (2011)CrossRef Tang, C.Z., Alici, G.: Evaluation of length-scale effects for mechanical behaviour of micro- and nanocantilevers: Ii. Experimental verification of deflection models using atomic force microscopy. J. Phys. D. Appl. Phys. 44(33), 335502 (2011)CrossRef
3.
go back to reference Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. Aip Adv. 6(10), 51–59 (2016)CrossRef Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. Aip Adv. 6(10), 51–59 (2016)CrossRef
4.
go back to reference Li, Z.K., He, Y.M., Lei, J., Guo, S., Liu, D.B., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)CrossRef Li, Z.K., He, Y.M., Lei, J., Guo, S., Liu, D.B., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)CrossRef
5.
go back to reference Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)CrossRef Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)CrossRef
6.
go back to reference Anderson, W.B., Lakes, R.S.: Size effects due to cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29(24), 6413–6419 (1994)CrossRef Anderson, W.B., Lakes, R.S.: Size effects due to cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29(24), 6413–6419 (1994)CrossRef
7.
go back to reference Andrews, E.W., Gioux, G., Onck, P., Gibson, L.J.: Size effects in ductile cellular solids. Part ii: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001)MATHCrossRef Andrews, E.W., Gioux, G., Onck, P., Gibson, L.J.: Size effects in ductile cellular solids. Part ii: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001)MATHCrossRef
8.
go back to reference Chong, A.C., Lam, D.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999)CrossRef Chong, A.C., Lam, D.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999)CrossRef
9.
go back to reference Bastawros, A.F., Bart, S.H., Evans, A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301–322 (2000)MATHCrossRef Bastawros, A.F., Bart, S.H., Evans, A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301–322 (2000)MATHCrossRef
10.
go back to reference Yang, J., Cady, C., Hu, M.S., Zok, F., Mehrabian, R., Evans, A.G.: Effects of damage on the flow strength and ductility of a ductile al alloy reinforced with sic particulates. Acta Metal. Et. Mater. 38(12), 2613–2619 (1990)CrossRef Yang, J., Cady, C., Hu, M.S., Zok, F., Mehrabian, R., Evans, A.G.: Effects of damage on the flow strength and ductility of a ductile al alloy reinforced with sic particulates. Acta Metal. Et. Mater. 38(12), 2613–2619 (1990)CrossRef
11.
go back to reference Lloyd, D.J.: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994)CrossRef Lloyd, D.J.: Particle-reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39(1), 1–23 (1994)CrossRef
12.
go back to reference Kouzeli, M., Mortensen, A.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50(1), 39–51 (2002)CrossRef Kouzeli, M., Mortensen, A.: Size dependent strengthening in particle reinforced aluminium. Acta Mater. 50(1), 39–51 (2002)CrossRef
13.
go back to reference Yan, Y.W., Geng, L., Li, A.B.: Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Mater. Sci. Eng. A 448(1–2), 315–325 (2007)CrossRef Yan, Y.W., Geng, L., Li, A.B.: Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Mater. Sci. Eng. A 448(1–2), 315–325 (2007)CrossRef
15.
go back to reference Krner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)CrossRef Krner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3(5), 731–742 (1967)CrossRef
17.
go back to reference Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetMATHCrossRef Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetMATHCrossRef
20.
go back to reference Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef
21.
go back to reference Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)MATHCrossRef
22.
go back to reference Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Mech. 54(9), 4703–4710 (1983) Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Mech. 54(9), 4703–4710 (1983)
23.
go back to reference Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)MATHCrossRef Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)MATHCrossRef
24.
go back to reference Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13/14), 1157–1184 (2005)MathSciNetMATHCrossRef Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int. J. Eng. Sci. 43(13/14), 1157–1184 (2005)MathSciNetMATHCrossRef
26.
go back to reference Voigt, W.: Theoretische studien uber die elasticitatsverhaltnisse der krystalle. Annalen der Physik, 38, 573–587 (1889) Voigt, W.: Theoretische studien uber die elasticitatsverhaltnisse der krystalle. Annalen der Physik, 38, 573–587 (1889)
28.
go back to reference Koiter, W.T.: Couple-stress in the theory of elasticity. Int. J. Solids Struct. 67, 17–44 (1963)MATH Koiter, W.T.: Couple-stress in the theory of elasticity. Int. J. Solids Struct. 67, 17–44 (1963)MATH
29.
go back to reference Mindlin, R.D., Eshel, N.N.: Effects of couple-stresses in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1968)CrossRef Mindlin, R.D., Eshel, N.N.: Effects of couple-stresses in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1968)CrossRef
30.
go back to reference Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef
31.
go back to reference Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)CrossRef Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)CrossRef
32.
go back to reference Shaat, M.: Physical and mathematical representations of couple stress effects on micro/nanosolids. Int. J. Appl. Mech. 07(01), 1550012 (2015)CrossRef Shaat, M.: Physical and mathematical representations of couple stress effects on micro/nanosolids. Int. J. Appl. Mech. 07(01), 1550012 (2015)CrossRef
33.
go back to reference Neff, P., Munch, I., Ghiba, I.D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of a.r hadjesfandiari and g.f. dargush. Int. J. Solids Struct. 81, 233–243 (2016)CrossRef Neff, P., Munch, I., Ghiba, I.D., Madeo, A.: On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of a.r hadjesfandiari and g.f. dargush. Int. J. Solids Struct. 81, 233–243 (2016)CrossRef
34.
go back to reference Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)MATHCrossRef Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46(13), 2757–2764 (2009)MATHCrossRef
35.
go back to reference Chen, W.J., Li, X.P.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84(3), 323–341 (2014)MATHCrossRef Chen, W.J., Li, X.P.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84(3), 323–341 (2014)MATHCrossRef
36.
go back to reference Deng, G.Q., Dargush, G.: Mixed convolved lagrange multiplier variational formulation for size-dependent elastodynamic couple stress response. Acta Mech. 233(5), 1837–1863 (2022)MathSciNetMATHCrossRef Deng, G.Q., Dargush, G.: Mixed convolved lagrange multiplier variational formulation for size-dependent elastodynamic couple stress response. Acta Mech. 233(5), 1837–1863 (2022)MathSciNetMATHCrossRef
37.
go back to reference Wang, Y.X., Zhang, X., Shen, H.M., Liu, J., Zhang, B.: Couple stress-based 3d contact of elastic films. Int. J. Solids Struct. 191–192, 449–463 (2020)CrossRef Wang, Y.X., Zhang, X., Shen, H.M., Liu, J., Zhang, B.: Couple stress-based 3d contact of elastic films. Int. J. Solids Struct. 191–192, 449–463 (2020)CrossRef
38.
go back to reference Liu, N., Fu, L.Y., Tang, G., Kong, Y., Xu, X.Y.: Modified lsm for size-dependent wave propagation: comparison with modified couple stress theory. Acta Mech. 231(4), 1285–1304 (2020)MathSciNetMATHCrossRef Liu, N., Fu, L.Y., Tang, G., Kong, Y., Xu, X.Y.: Modified lsm for size-dependent wave propagation: comparison with modified couple stress theory. Acta Mech. 231(4), 1285–1304 (2020)MathSciNetMATHCrossRef
39.
go back to reference Apostolakis, G., Dargush, G.F.: Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two-and three-dimensional problems. Acta Mech. 234, 891–910 (2022)MathSciNetMATHCrossRef Apostolakis, G., Dargush, G.F.: Size-dependent couple stress natural frequency analysis via a displacement-based variational method for two-and three-dimensional problems. Acta Mech. 234, 891–910 (2022)MathSciNetMATHCrossRef
40.
go back to reference Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106(4), 326–330 (1984)CrossRef Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106(4), 326–330 (1984)CrossRef
41.
go back to reference Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)MATHCrossRef Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)MATHCrossRef
42.
go back to reference Han, C.S., Gao, H.J., Huang, Y.G., Nix, W.D.: Mechanism-based strain gradient plasticity-i. Theory. J. Mech. Phys. Solids 47(5), 1239–1263 (1999)MathSciNetMATH Han, C.S., Gao, H.J., Huang, Y.G., Nix, W.D.: Mechanism-based strain gradient plasticity-i. Theory. J. Mech. Phys. Solids 47(5), 1239–1263 (1999)MathSciNetMATH
43.
go back to reference Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(3/6), 259–280 (2003)CrossRef Aifantis, E.C.: Update on a class of gradient theories. Mech. Mater. 35(3/6), 259–280 (2003)CrossRef
44.
go back to reference Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001)MATHCrossRef Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10), 2245–2271 (2001)MATHCrossRef
45.
go back to reference Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef
46.
go back to reference Zhou, S.J., Li, A.Q., Wang, B.L.: A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. Int. J. Solids Struct. 80, 28–37 (2016)CrossRef Zhou, S.J., Li, A.Q., Wang, B.L.: A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. Int. J. Solids Struct. 80, 28–37 (2016)CrossRef
47.
go back to reference Fu, G.Y., Zhou, S.J., Qi, L.: On the strain gradient elasticity theory for isotropic materials. Int. J. Eng. Sci. 154, 103348 (2020)MathSciNetMATHCrossRef Fu, G.Y., Zhou, S.J., Qi, L.: On the strain gradient elasticity theory for isotropic materials. Int. J. Eng. Sci. 154, 103348 (2020)MathSciNetMATHCrossRef
48.
go back to reference Rahimi, Z., Rezazadeh, G., Sumelka, W.: A non-local fractional stress-strain gradient theory. Int. J. Mech. Mater. Des. 16(2), 265–278 (2020)CrossRef Rahimi, Z., Rezazadeh, G., Sumelka, W.: A non-local fractional stress-strain gradient theory. Int. J. Mech. Mater. Des. 16(2), 265–278 (2020)CrossRef
49.
go back to reference Fu, G.Y., Zhou, S.J., Qi, L.: A size-dependent Bernoulli–Euler beam model based on strain gradient elasticity theory incorporating surface effects. ZAMM 99(6), 1–22 (2019)MathSciNetCrossRef Fu, G.Y., Zhou, S.J., Qi, L.: A size-dependent Bernoulli–Euler beam model based on strain gradient elasticity theory incorporating surface effects. ZAMM 99(6), 1–22 (2019)MathSciNetCrossRef
50.
51.
go back to reference Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Aifantis versus lam strain gradient models of bishop elastic rods. Acta Mech. 230(8), 2799–2812 (2019)MathSciNetMATHCrossRef Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Aifantis versus lam strain gradient models of bishop elastic rods. Acta Mech. 230(8), 2799–2812 (2019)MathSciNetMATHCrossRef
52.
go back to reference Lazar, M.: Incompatible strain gradient elasticity of mindlin type: screw and edge dislocations. Acta Mech. 232(9), 3471–3494 (2021)MathSciNetMATHCrossRef Lazar, M.: Incompatible strain gradient elasticity of mindlin type: screw and edge dislocations. Acta Mech. 232(9), 3471–3494 (2021)MathSciNetMATHCrossRef
53.
go back to reference Le, T.M., Vo, D., Rungamornrat, J., Bui, T.Q.: Strain-gradient theory for shear deformation free-form microshells: governing equations of motion and general boundary conditions. Int. J. Solids Struct. 248, 111579 (2022)CrossRef Le, T.M., Vo, D., Rungamornrat, J., Bui, T.Q.: Strain-gradient theory for shear deformation free-form microshells: governing equations of motion and general boundary conditions. Int. J. Solids Struct. 248, 111579 (2022)CrossRef
54.
go back to reference Li, G.E., Kuo, H.Y.: Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites. Acta Mech. 232(4), 1353–1378 (2021)MathSciNetMATHCrossRef Li, G.E., Kuo, H.Y.: Effects of strain gradient and electromagnetic field gradient on potential and field distributions of multiferroic fibrous composites. Acta Mech. 232(4), 1353–1378 (2021)MathSciNetMATHCrossRef
56.
go back to reference Ashton, J.E., Halpin, J.C., Petit, A.: Primer on Composite Materials: Analysis. Washington University, Washington (1969) Ashton, J.E., Halpin, J.C., Petit, A.: Primer on Composite Materials: Analysis. Washington University, Washington (1969)
57.
go back to reference Chong, A.C., Yang, F., Lam, D.C.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)CrossRef Chong, A.C., Yang, F., Lam, D.C.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16(4), 1052–1058 (2001)CrossRef
58.
go back to reference Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metal Mater. 42(2), 475–487 (1994)CrossRef Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metal Mater. 42(2), 475–487 (1994)CrossRef
Metadata
Title
A simplified deformation gradient theory and its experimental verification
Authors
Yucheng Zhou
Kefu Huang
Publication date
28-03-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03545-y

Other articles of this Issue 7/2023

Acta Mechanica 7/2023 Go to the issue

Premium Partners