Skip to main content
Top
Published in: Acta Mechanica 7/2023

27-03-2023 | Original Paper

Numerical investigation of low band gap and vibration suppression for novel four-ligament chiral composite metamaterial structures

Authors: Shu-liang Cheng, Hong-yun Yang, Xiao-feng Li, Qian Ding, Qun Yan, Yong-tao Sun, Ya-jun Xin, Liang Wang

Published in: Acta Mechanica | Issue 7/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a novel antichiral composite acoustic metamaterial structure is proposed to attenuate low-frequency elastic waves. Based on Bloch theorem and COMSOL finite element software, the wave behavior of the lattice of the dynamic model is solved. The band structure is obtained, and the formation of the band gap and the wave transmission characteristics of the structure are carefully studied. The dispersion characteristics of the structure are numerically studied, and the effects of material and geometric parameters on the distribution width and position of the band gap are analyzed. The results show that the structure can generate multiple band gaps in the low-frequency range of 500 Hz, and the band gap can be flexibly adjusted according to the structural characteristics. The finite element simulation of excitation in the finite-size periodic structure highlights the vibration reduction performance of the structure and shows its potential in practical applications.
Literature
1.
go back to reference Hu, G., Tang, L., Das, R., et al.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7(2), 025211 (2017)CrossRef Hu, G., Tang, L., Das, R., et al.: Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv. 7(2), 025211 (2017)CrossRef
2.
go back to reference Wang, Y.F., Wang, Y.S., Wang, L.: Two-dimensional ternary locally resonant phononic crystals with a comblike coating. J. Phys. D Appl. Phys. 47(1), 015502 (2014)CrossRef Wang, Y.F., Wang, Y.S., Wang, L.: Two-dimensional ternary locally resonant phononic crystals with a comblike coating. J. Phys. D Appl. Phys. 47(1), 015502 (2014)CrossRef
3.
go back to reference Chiang, T.Y., Wu, L.Y., Tsai, C.N., et al.: A multilayered acoustic hyperlens with acoustic metamaterials. Appl. Phys. A 103(2), 355–359 (2011)CrossRef Chiang, T.Y., Wu, L.Y., Tsai, C.N., et al.: A multilayered acoustic hyperlens with acoustic metamaterials. Appl. Phys. A 103(2), 355–359 (2011)CrossRef
4.
go back to reference Oh, J.H., Seung, H.M., Kim, Y.Y.: Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: design and realization. J. Sound Vib. 410, 169–186 (2017)CrossRef Oh, J.H., Seung, H.M., Kim, Y.Y.: Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: design and realization. J. Sound Vib. 410, 169–186 (2017)CrossRef
5.
go back to reference Lu, M.H., Chao, Z., Liang, F., et al.: Negative birefraction of acoustic waves in a sonic crystal. Nat. Mater. 6(10), 744–748 (2007)CrossRef Lu, M.H., Chao, Z., Liang, F., et al.: Negative birefraction of acoustic waves in a sonic crystal. Nat. Mater. 6(10), 744–748 (2007)CrossRef
6.
go back to reference Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45–45 (2007)CrossRef Cummer, S.A., Schurig, D.: One path to acoustic cloaking. New J. Phys. 9, 45–45 (2007)CrossRef
7.
go back to reference Zigoneanu, L., Popa, B.I., Cummer, S.A.: Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13(4), 352–355 (2014)CrossRef Zigoneanu, L., Popa, B.I., Cummer, S.A.: Three-dimensional broadband omnidirectional acoustic ground cloak. Nat. Mater. 13(4), 352–355 (2014)CrossRef
8.
go back to reference Wu, F.G., Liu, Z.Y., Liu, Y.Y.: Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Phys. Rev. E 66(4 Pt 2), 046628 (2002)CrossRef Wu, F.G., Liu, Z.Y., Liu, Y.Y.: Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Phys. Rev. E 66(4 Pt 2), 046628 (2002)CrossRef
9.
go back to reference Sigalas, M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86(3), 141–143 (1993)CrossRef Sigalas, M., Economou, E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86(3), 141–143 (1993)CrossRef
10.
go back to reference Wang, P., Shim, J.M., Bertoldi, K.: Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Phys. Rev. B 88(1), 014304 (2013)CrossRef Wang, P., Shim, J.M., Bertoldi, K.: Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals. Phys. Rev. B 88(1), 014304 (2013)CrossRef
11.
go back to reference Bonanomi, L., Theocharis, G., Daraio, C.: Wave propagation in granular chains with local resonances. Phys. Rev. E 91(3), 033208 (2015)CrossRef Bonanomi, L., Theocharis, G., Daraio, C.: Wave propagation in granular chains with local resonances. Phys. Rev. E 91(3), 033208 (2015)CrossRef
12.
go back to reference Huang, Z.G., Chen, Z.Y.: Acoustic waves in two-dimensional phononic crystals with reticular geometric structures. J. Vib. Acoust. 133(3), 031011 (2011)CrossRef Huang, Z.G., Chen, Z.Y.: Acoustic waves in two-dimensional phononic crystals with reticular geometric structures. J. Vib. Acoust. 133(3), 031011 (2011)CrossRef
13.
go back to reference Dong, Y.K., Yao, H., Du, J., et al.: Research on bandgap property of a novel small size multi-band phononic crystal. Phys. Lett. A 383(4), 283–288 (2019)CrossRef Dong, Y.K., Yao, H., Du, J., et al.: Research on bandgap property of a novel small size multi-band phononic crystal. Phys. Lett. A 383(4), 283–288 (2019)CrossRef
14.
go back to reference Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Phys. B 338(5485), 201–205 (2000) Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Phys. B 338(5485), 201–205 (2000)
15.
go back to reference Li, J., Wang, Y.T., Chen, W.Q., et al.: Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures. J. Sound Vib. 459, 114848 (2019)CrossRef Li, J., Wang, Y.T., Chen, W.Q., et al.: Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures. J. Sound Vib. 459, 114848 (2019)CrossRef
16.
go back to reference Ma, F.Y., Wu, J.H., Huang, M., Zhang, W.Q., Zhang, S.W.: A purely flexible lightweight membrane-type acoustic metamaterial. J. Phys. D Appl. Phys. 48(17), 175105 (2015)CrossRef Ma, F.Y., Wu, J.H., Huang, M., Zhang, W.Q., Zhang, S.W.: A purely flexible lightweight membrane-type acoustic metamaterial. J. Phys. D Appl. Phys. 48(17), 175105 (2015)CrossRef
17.
go back to reference Ma, F.Y., Wang, C., Liu, C.R., Wu, J.H.: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 129, 231103 (2021)CrossRef Ma, F.Y., Wang, C., Liu, C.R., Wu, J.H.: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 129, 231103 (2021)CrossRef
18.
go back to reference Yang, Z., Mei, J., Yang, M., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101(20), 204301 (2008)CrossRef Yang, Z., Mei, J., Yang, M., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101(20), 204301 (2008)CrossRef
19.
go back to reference Park, C.M., Park, J.J., Lee, S.H., et al.: Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107(19), 194301 (2011)CrossRef Park, C.M., Park, J.J., Lee, S.H., et al.: Amplification of acoustic evanescent waves using metamaterial slabs. Phys. Rev. Lett. 107(19), 194301 (2011)CrossRef
20.
go back to reference Sui, N., Yan, X., Huang, T.Y., et al.: A lightweight yet sound-proof honeycomb acoustic metamateriai. Appl. Phys. Lett. 106(17), 171905 (2015)CrossRef Sui, N., Yan, X., Huang, T.Y., et al.: A lightweight yet sound-proof honeycomb acoustic metamateriai. Appl. Phys. Lett. 106(17), 171905 (2015)CrossRef
21.
go back to reference Liu, X.N., Hu, G.K., Sun, C.T., et al.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330(11), 2536–2553 (2011)CrossRef Liu, X.N., Hu, G.K., Sun, C.T., et al.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330(11), 2536–2553 (2011)CrossRef
22.
go back to reference Zhu, R., Hu, G.K., Reynolds, M., et al.: An elastic metamaterial beam for broadband vibration suppression. Proc SPIE—Int. Soc. Opt. Eng. 8695, 86952J (2013) Zhu, R., Hu, G.K., Reynolds, M., et al.: An elastic metamaterial beam for broadband vibration suppression. Proc SPIE—Int. Soc. Opt. Eng. 8695, 86952J (2013)
23.
go back to reference He, C., Lim, K.M., Liang, X., Zhang, F., Jiang, J.H.: Tunable band structures design for elastic wave transmission in tension metamaterial chain. Eur. J. Mech. A-Solids 92, 104481 (2022)MathSciNetCrossRefMATH He, C., Lim, K.M., Liang, X., Zhang, F., Jiang, J.H.: Tunable band structures design for elastic wave transmission in tension metamaterial chain. Eur. J. Mech. A-Solids 92, 104481 (2022)MathSciNetCrossRefMATH
24.
go back to reference Huang, Y.L., Li, J., Chen, W.Q., Bao, R.H.: Tunable bandgaps in soft phononic plates with spring-mass-like resonators. Int. J. Mech. Sci. 151, 300–303 (2019)CrossRef Huang, Y.L., Li, J., Chen, W.Q., Bao, R.H.: Tunable bandgaps in soft phononic plates with spring-mass-like resonators. Int. J. Mech. Sci. 151, 300–303 (2019)CrossRef
25.
go back to reference Wang, Y.F., Wang, Y.S., Zhang, C.Z.: Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: bandgap and simultaneously double negative properties. J. Acoust. Soc. Am. 139(6), 3310–3318 (2016)CrossRef Wang, Y.F., Wang, Y.S., Zhang, C.Z.: Two-dimensional locally resonant elastic metamaterials with chiral comb-like interlayers: bandgap and simultaneously double negative properties. J. Acoust. Soc. Am. 139(6), 3310–3318 (2016)CrossRef
26.
go back to reference Mokhtari, A.A., Lu, Y., Srivastava, A.: On the emergence of negative effective density and modulus in 2-phase phononic crystals. J. Mech. Phys. Solids 126, 256–271 (2019)CrossRef Mokhtari, A.A., Lu, Y., Srivastava, A.: On the emergence of negative effective density and modulus in 2-phase phononic crystals. J. Mech. Phys. Solids 126, 256–271 (2019)CrossRef
27.
go back to reference Shmuel, G., Band, R., et al.: Universality of the frequency spectrum of laminates. J. Mech. Phys. Solids 92, 127–136 (2016)MathSciNetCrossRef Shmuel, G., Band, R., et al.: Universality of the frequency spectrum of laminates. J. Mech. Phys. Solids 92, 127–136 (2016)MathSciNetCrossRef
28.
go back to reference Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)CrossRef Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)CrossRef
29.
go back to reference Trainiti, G., Rimoli, J.J., Ruzzene, M.: Wave propagation in undulated structural lattices. Int. J. Solids Struct. 97–98, 431–444 (2016)CrossRef Trainiti, G., Rimoli, J.J., Ruzzene, M.: Wave propagation in undulated structural lattices. Int. J. Solids Struct. 97–98, 431–444 (2016)CrossRef
30.
go back to reference Zhang, K., Zhao, P., Hong, F., et al.: On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators. Smart Mater. Struct. 29(1), 015017 (2020)CrossRef Zhang, K., Zhao, P., Hong, F., et al.: On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators. Smart Mater. Struct. 29(1), 015017 (2020)CrossRef
31.
32.
go back to reference Spadoni, A., Ruzzene, M., Gonella, S., et al.: Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435–450 (2009)MathSciNetCrossRefMATH Spadoni, A., Ruzzene, M., Gonella, S., et al.: Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435–450 (2009)MathSciNetCrossRefMATH
33.
go back to reference Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)CrossRef Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)CrossRef
34.
go back to reference Qi, D.X., Yu, H.B., Hu, W.X., He, C.W., Wu, W.W., Ma, Y.B.: Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mech. Lett. 28, 58–68 (2019)CrossRef Qi, D.X., Yu, H.B., Hu, W.X., He, C.W., Wu, W.W., Ma, Y.B.: Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mech. Lett. 28, 58–68 (2019)CrossRef
35.
go back to reference Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)CrossRef Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)CrossRef
36.
go back to reference Ma, F.Y., Xu, Y.C., Wu, J.H.: Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials. Appl. Phys. Express 12, 074004 (2019)CrossRef Ma, F.Y., Xu, Y.C., Wu, J.H.: Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials. Appl. Phys. Express 12, 074004 (2019)CrossRef
37.
go back to reference Zhang, S.W., Wu, J.H., Hu, Z.P.: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators. J. Appl. Phys. 113, 163511 (2013)CrossRef Zhang, S.W., Wu, J.H., Hu, Z.P.: Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators. J. Appl. Phys. 113, 163511 (2013)CrossRef
Metadata
Title
Numerical investigation of low band gap and vibration suppression for novel four-ligament chiral composite metamaterial structures
Authors
Shu-liang Cheng
Hong-yun Yang
Xiao-feng Li
Qian Ding
Qun Yan
Yong-tao Sun
Ya-jun Xin
Liang Wang
Publication date
27-03-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03543-0

Other articles of this Issue 7/2023

Acta Mechanica 7/2023 Go to the issue

Premium Partners