Skip to main content
Top
Published in: Environmental Earth Sciences 20/2019

01-10-2019 | Original Article

A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery

Published in: Environmental Earth Sciences | Issue 20/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comprehensive analysis of glacier dynamic evolution is essential to understand the influence of global climate change at different time scales. In this paper, we derive surface velocity fields of Fedchenko and Grumm-Grzhimaylo glacier during four different periods in 2007–2008 with an efficient pixel-tracking (PT) method on ALOS/PALSAR imagery. The improving PT method operates with an ice region mask file and the execution time is reduced to about only a quarter of original one on experimental data or even less with the same computer configurations. The comparison of ice motion monitoring results yields that ice flow velocity in the middle and lower parts of Fedchenko glacier is generally higher than that in the upper part, with the maximum value of 82.60 cm day−1 in winter. Between winters, respectively, in 2007 and 2008, no pronounced inter-annual variation was found with the average change rate of 2.8%. Besides, the ice flow velocity in the terminus slows down mainly attributing to the impediments of 6.5-km-long glacier debris, while velocity in the spring is significantly faster than that in the winter. And its monthly ice flow velocity increased by 6.5% from February to April and 57.8% from April to May. Besides, the maximum speed of Grumm-Grzhimaylo glacier in winter is 50.91 cm day−1 along with a significant acceleration in spring. Obviously, the long-term observation of spatio-temporal variation in glacier motion with efficient PT method would benefit the studies of glacier dynamics and climate change.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aizen VB et al (2009) Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J Glaciol 55:275–291CrossRef Aizen VB et al (2009) Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J Glaciol 55:275–291CrossRef
go back to reference Balasubramanian A (2015) The world's water. University of Mysore, Mysore Balasubramanian A (2015) The world's water. University of Mysore, Mysore
go back to reference Belz JE, Rodriguez E, Morris CS (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 72:249–260CrossRef Belz JE, Rodriguez E, Morris CS (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 72:249–260CrossRef
go back to reference Chae SH, Lee WJ, Jung HS, Zhang L (2017) Ionospheric correction of L-band SAR offset measurements for the precise observation of glacier velocity variations on Novaya Zemlya. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1–13CrossRef Chae SH, Lee WJ, Jung HS, Zhang L (2017) Ionospheric correction of L-band SAR offset measurements for the precise observation of glacier velocity variations on Novaya Zemlya. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1–13CrossRef
go back to reference Ding YF, Cheng X, Cheng C, Hui FM (2017) Monitoring ice velocity by SAR offset-tracking and analysis of influence factors for the Kangshung glacier in the Tibetan plateau. Chinese J Geophys 60:1650–1658 Ding YF, Cheng X, Cheng C, Hui FM (2017) Monitoring ice velocity by SAR offset-tracking and analysis of influence factors for the Kangshung glacier in the Tibetan plateau. Chinese J Geophys 60:1650–1658
go back to reference Gabbud C, Micheletti N, Lane SN (2016) Response of a temperate alpine valley glacier to climate change at the decadal scale. Geogr Ann 98:81–95CrossRef Gabbud C, Micheletti N, Lane SN (2016) Response of a temperate alpine valley glacier to climate change at the decadal scale. Geogr Ann 98:81–95CrossRef
go back to reference Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream. Science 262:1525–1530CrossRef Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an antarctic ice stream. Science 262:1525–1530CrossRef
go back to reference Gourmelen N, Kim SW, Shepherd A, Park JW, Sundal AV, Björnsson H, Pálsson F (2011) Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet Sci Lett 307:156–160CrossRef Gourmelen N, Kim SW, Shepherd A, Park JW, Sundal AV, Björnsson H, Pálsson F (2011) Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet Sci Lett 307:156–160CrossRef
go back to reference Gray AL, Mattar KE, Vachon PW, Bindschadler R (1998) InSAR results from the RADARSAT antarctic mapping mission data: estimation of glacier motion using a simple registration procedure. In: Geoscience and Remote Sensing Symposium Proceedings. IGARSS 98. 1998 IEEE International, 1998, vol. 1633, pp 1638–1640 Gray AL, Mattar KE, Vachon PW, Bindschadler R (1998) InSAR results from the RADARSAT antarctic mapping mission data: estimation of glacier motion using a simple registration procedure. In: Geoscience and Remote Sensing Symposium Proceedings. IGARSS 98. 1998 IEEE International, 1998, vol. 1633, pp 1638–1640
go back to reference Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46(111):150–160CrossRef Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46(111):150–160CrossRef
go back to reference Hwang H, Haddad R (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image 4:499CrossRef Hwang H, Haddad R (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image 4:499CrossRef
go back to reference Iwata S (2012) Mapping features of Fedchenko Glacier, the Pamirs Central Asia from Space. Bull Hokkaido Geogr Soc 84:33–43 Iwata S (2012) Mapping features of Fedchenko Glacier, the Pamirs Central Asia from Space. Bull Hokkaido Geogr Soc 84:33–43
go back to reference Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science 320:781–783CrossRef Joughin I, Das SB, King MA, Smith BE, Howat IM, Moon T (2008) Seasonal speedup along the western flank of the Greenland ice sheet. Science 320:781–783CrossRef
go back to reference Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102:24–32CrossRef Khromova TE, Osipova GB, Tsvetkov DG, Dyurgerov MB, Barry RG (2006) Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sens Environ 102:24–32CrossRef
go back to reference Lambrecht A, Mayer C, Surazakov A, Aizen V (2010) Changes of Fedchenko Glacier, Pamir, during the last 81 years EGU General Assembly Conference Abstracts 12:1522 Lambrecht A, Mayer C, Surazakov A, Aizen V (2010) Changes of Fedchenko Glacier, Pamir, during the last 81 years EGU General Assembly Conference Abstracts 12:1522
go back to reference Liu T, Niu M, Yang Y (2017) Ice velocity variations of the polar record glacier (East Antarctica) using a rotation-invariant feature-tracking approach. Remote Sens 10:42CrossRef Liu T, Niu M, Yang Y (2017) Ice velocity variations of the polar record glacier (East Antarctica) using a rotation-invariant feature-tracking approach. Remote Sens 10:42CrossRef
go back to reference Meier MF, Dyurgerov MB, Mccabe GJ (2003) The health of glaciers: recent changes in glacier regime. Clim Chang 59:123–135CrossRef Meier MF, Dyurgerov MB, Mccabe GJ (2003) The health of glaciers: recent changes in glacier regime. Clim Chang 59:123–135CrossRef
go back to reference Oerlemans J, Fortuin JP (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258:115–117CrossRef Oerlemans J, Fortuin JP (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258:115–117CrossRef
go back to reference Paul F et al (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens Environ 162:408–426CrossRef Paul F et al (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens Environ 162:408–426CrossRef
go back to reference Paul F et al (2017) Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens Environ 203:256–275CrossRef Paul F et al (2017) Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens Environ 203:256–275CrossRef
go back to reference Raper SC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311CrossRef Raper SC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311CrossRef
go back to reference Rgi C, Khromova T (2017) Randolph glacier inventory (RGI)—A dataset of global glacier outlines: Version 6.0. Technical report, Global Land ice measurements from Space, Boulder, Colorado, USA Rgi C, Khromova T (2017) Randolph glacier inventory (RGI)—A dataset of global glacier outlines: Version 6.0. Technical report, Global Land ice measurements from Space, Boulder, Colorado, USA
go back to reference Sansosti E, Berardino P, Manunta M, Serafino F, Fornaro G (2006) Geometrical SAR image registration. IEEE Trans Geosci Remote Sens 44:2861–2870CrossRef Sansosti E, Berardino P, Manunta M, Serafino F, Fornaro G (2006) Geometrical SAR image registration. IEEE Trans Geosci Remote Sens 44:2861–2870CrossRef
go back to reference Satyabala SP (2016) Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: study using synthetic aperture radar data. Remote Sens Environ 181:151–161CrossRef Satyabala SP (2016) Spatiotemporal variations in surface velocity of the Gangotri glacier, Garhwal Himalaya, India: study using synthetic aperture radar data. Remote Sens Environ 181:151–161CrossRef
go back to reference Scherler D, Leprince S, Strecker MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens Environ 112:3806–3819CrossRef Scherler D, Leprince S, Strecker MR (2008) Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens Environ 112:3806–3819CrossRef
go back to reference Strozzi T, Luckman A, Murray T, Wegmuller U (2002) Glacier motion estimation using SAR offset-tracking procedures. Geosci Remote Sens IEEE Trans 40:2384–2391CrossRef Strozzi T, Luckman A, Murray T, Wegmuller U (2002) Glacier motion estimation using SAR offset-tracking procedures. Geosci Remote Sens IEEE Trans 40:2384–2391CrossRef
go back to reference Strozzi T, Kouraev A, Wiesmann A, Wegmüller U, Sharov A, Werner C (2008) Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens Environ 112:636–645CrossRef Strozzi T, Kouraev A, Wiesmann A, Wegmüller U, Sharov A, Werner C (2008) Estimation of Arctic glacier motion with satellite L-band SAR data. Remote Sens Environ 112:636–645CrossRef
go back to reference Tong X et al (2018) Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens Environ 204:122–137CrossRef Tong X et al (2018) Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens Environ 204:122–137CrossRef
go back to reference Vijay S, Braun MH (2017) Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): ice Velocity Mass Flux, Surface Elevation and Front Position. Remote Sens 9:635CrossRef Vijay S, Braun MH (2017) Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): ice Velocity Mass Flux, Surface Elevation and Front Position. Remote Sens 9:635CrossRef
go back to reference Wang P, Li Z, Zhou P, Li H, Yu G, Xu C, Wang L (2017) Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan, China Cold Regions. Sci Technol 145:177184 Wang P, Li Z, Zhou P, Li H, Yu G, Xu C, Wang L (2017) Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan, China Cold Regions. Sci Technol 145:177184
go back to reference Wendt A, Mayer C, Lambrecht A, Floricioiu D (2017) A glacier surge of Bivachny glacier Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities. Remote Sens 9:388CrossRef Wendt A, Mayer C, Lambrecht A, Floricioiu D (2017) A glacier surge of Bivachny glacier Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities. Remote Sens 9:388CrossRef
go back to reference Yan S, Guo H, Liu G, Ruan Z (2013) Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sens Lett 4:494–503CrossRef Yan S, Guo H, Liu G, Ruan Z (2013) Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR data. Remote Sens Lett 4:494–503CrossRef
go back to reference Yan S, Liu G, Wang Y, Perski Z, Ruan Z (2015a) Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery. Environ Earth Sci 74:1871–1881CrossRef Yan S, Liu G, Wang Y, Perski Z, Ruan Z (2015a) Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery. Environ Earth Sci 74:1871–1881CrossRef
go back to reference Yan S, Liu G, Wang Y, Ruan Z (2015b) Accurate determination of glacier surface velocity fields with a DEM-assisted pixel-tracking technique from SAR imagery. Remote Sens 7:10898–10916CrossRef Yan S, Liu G, Wang Y, Ruan Z (2015b) Accurate determination of glacier surface velocity fields with a DEM-assisted pixel-tracking technique from SAR imagery. Remote Sens 7:10898–10916CrossRef
go back to reference Zhang Q, Kang S, Chen F (2014) Glacier variations in the Fedchenko Basin, Tajikistan, 1992–2006: insights from remote-sensing images. Mountain Res Dev 34:56–65CrossRef Zhang Q, Kang S, Chen F (2014) Glacier variations in the Fedchenko Basin, Tajikistan, 1992–2006: insights from remote-sensing images. Mountain Res Dev 34:56–65CrossRef
Metadata
Title
A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery
Publication date
01-10-2019
Published in
Environmental Earth Sciences / Issue 20/2019
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-019-8610-8

Other articles of this Issue 20/2019

Environmental Earth Sciences 20/2019 Go to the issue