Skip to main content
Top
Published in: Data Mining and Knowledge Discovery 4/2023

05-05-2023

A spatiotemporal deep neural network for fine-grained multi-horizon wind prediction

Authors: Fanling Huang, Yangdong Deng

Published in: Data Mining and Knowledge Discovery | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The prediction of wind in terms of both wind speed and direction, which has a crucial impact on many real-world applications like aviation and wind power generation, is extremely challenging due to the high stochasticity and complicated correlation in the weather data. Existing methods typically focus on a sub-set of influential factors and thus lack a systematic treatment of the problem. In addition, fine-grained forecasting is essential for efficient industry operations, but has been less attended in the literature. In this work, we propose a novel data-driven model, multi-horizon spatiotemporal network (MHSTN), generally for accurate and efficient fine-grained wind prediction. MHSTN integrates multiple deep neural networks targeting different factors in a sequence-to-sequence (Seq2Seq) backbone to effectively extract features from various data sources and produce multi-horizon predictions for all sites within a given region. MHSTN is composed of four major modules. First, a temporal module fuses coarse-grained forecasts derived by numerical weather prediction (NWP) and historical on-site observation data at stations so as to leverage both global and local atmospheric information. Second, a spatial module exploits spatial correlation by modeling the joint representation of all stations. Third, an ensemble module weighs the above two modules for final predictions. Furthermore, a covariate selection module automatically choose influential meteorological variables as initial input. MHSTN is already integrated into the scheduling platform of one of the busiest international airports of China. The evaluation results demonstrate that our model outperforms competitors by a significant margin.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55CrossRef Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55CrossRef
go back to reference Cavalcante L, Bessa R, Reis M, Browell J (2017) Lasso vector autoregression structures for very short-term wind power forecasting. Wind Energy 20(4):657–675CrossRef Cavalcante L, Bessa R, Reis M, Browell J (2017) Lasso vector autoregression structures for very short-term wind power forecasting. Wind Energy 20(4):657–675CrossRef
go back to reference Ceci M, Corizzo R, Malerba D, Rashkovska A (2019) Spatial autocorrelation and entropy for renewable energy forecasting. Data Min Knowl Discov 33(3):698–729CrossRef Ceci M, Corizzo R, Malerba D, Rashkovska A (2019) Spatial autocorrelation and entropy for renewable energy forecasting. Data Min Knowl Discov 33(3):698–729CrossRef
go back to reference Cheng WY, Liu Y, Bourgeois AJ, Wu Y, Haupt SE (2017) Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renewab Energy 107:340–351CrossRef Cheng WY, Liu Y, Bourgeois AJ, Wu Y, Haupt SE (2017) Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renewab Energy 107:340–351CrossRef
go back to reference Damousis IG, Alexiadis MC, Theocharis JB, Dokopoulos PS (2004) A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 19(2):352–361CrossRef Damousis IG, Alexiadis MC, Theocharis JB, Dokopoulos PS (2004) A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 19(2):352–361CrossRef
go back to reference Erdem E, Shi J (2011) Arma based approaches for forecasting the tuple of wind speed and direction. Appl Energy 88(4):1405–1414CrossRef Erdem E, Shi J (2011) Arma based approaches for forecasting the tuple of wind speed and direction. Appl Energy 88(4):1405–1414CrossRef
go back to reference Ezzat AA (2020) Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations. Appl Energy 269:115034CrossRef Ezzat AA (2020) Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations. Appl Energy 269:115034CrossRef
go back to reference Fan C, Zhang Y, Pan Y, Li X, Zhang C, Yuan R, Wu D, Wang W, Pei J, Huang H (2019) Multi-horizon time series forecasting with temporal attention learning. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2527–2535 Fan C, Zhang Y, Pan Y, Li X, Zhang C, Yuan R, Wu D, Wang W, Pei J, Huang H (2019) Multi-horizon time series forecasting with temporal attention learning. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2527–2535
go back to reference Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, pp 315–323
go back to reference Gonçalves C, Cavalcante L, Brito M, Bessa RJ (2021) Forecasting conditional extreme quantiles for wind energy. Electric Power Syst Res 190:106636CrossRef Gonçalves C, Cavalcante L, Brito M, Bessa RJ (2021) Forecasting conditional extreme quantiles for wind energy. Electric Power Syst Res 190:106636CrossRef
go back to reference Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, Ieee, pp 6645–6649 Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, Ieee, pp 6645–6649
go back to reference Grimit EP, Gneiting T, Berrocal VJ, Johnson NA (2006) The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart J R Meteorol Soc 132(621C):2925–2942CrossRef Grimit EP, Gneiting T, Berrocal VJ, Johnson NA (2006) The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart J R Meteorol Soc 132(621C):2925–2942CrossRef
go back to reference Grover A, Kapoor A, Horvitz E (2015) A deep hybrid model for weather forecasting. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 379–386 Grover A, Kapoor A, Horvitz E (2015) A deep hybrid model for weather forecasting. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 379–386
go back to reference Guo T, Bifet A, Antulov-Fantulin N (2018) Bitcoin volatility forecasting with a glimpse into buy and sell orders. In: 2018 IEEE international conference on data mining (ICDM), IEEE, pp 989–994 Guo T, Bifet A, Antulov-Fantulin N (2018) Bitcoin volatility forecasting with a glimpse into buy and sell orders. In: 2018 IEEE international conference on data mining (ICDM), IEEE, pp 989–994
go back to reference Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1725–1732 Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1725–1732
go back to reference Khodayar M, Wang J (2018) Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans Sustainable Energy 10(2):670–681CrossRef Khodayar M, Wang J (2018) Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans Sustainable Energy 10(2):670–681CrossRef
go back to reference Kipf T, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations. arXiv:abs/1609.02907 Kipf T, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations. arXiv:​abs/​1609.​02907
go back to reference Krasnopolsky VM, Fox-Rabinovitz MS (2006) Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Netw 19(2):122–134CrossRef Krasnopolsky VM, Fox-Rabinovitz MS (2006) Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Netw 19(2):122–134CrossRef
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90CrossRef
go back to reference Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3–20MATH Marquardt DW, Snee RD (1975) Ridge regression in practice. Am Stat 29(1):3–20MATH
go back to reference Masseran N, Razali AM, Ibrahim K, Latif MT (2013) Fitting a mixture of von mises distributions in order to model data on wind direction in peninsular malaysia. Energy Convers Manage 72:94–102CrossRef Masseran N, Razali AM, Ibrahim K, Latif MT (2013) Fitting a mixture of von mises distributions in order to model data on wind direction in peninsular malaysia. Energy Convers Manage 72:94–102CrossRef
go back to reference Qin Q, Lai X, Zou J (2019) Direct multistep wind speed forecasting using lstm neural network combining eemd and fuzzy entropy. Appl Sci 9(1):126CrossRef Qin Q, Lai X, Zou J (2019) Direct multistep wind speed forecasting using lstm neural network combining eemd and fuzzy entropy. Appl Sci 9(1):126CrossRef
go back to reference Rasp S, Pritchard MS, Gentine P (2018) Deep learning to represent subgrid processes in climate models. Proc Natl Acad Sci 115(39):9684–9689CrossRef Rasp S, Pritchard MS, Gentine P (2018) Deep learning to represent subgrid processes in climate models. Proc Natl Acad Sci 115(39):9684–9689CrossRef
go back to reference Salcedo-Sanz S, Perez-Bellido AM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renewab Energy 34(6):1451–1457CrossRef Salcedo-Sanz S, Perez-Bellido AM, Ortiz-García EG, Portilla-Figueras A, Prieto L, Paredes D (2009) Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renewab Energy 34(6):1451–1457CrossRef
go back to reference Shi X, Chen Z, Wang H, Yeung DY, Wong WK, chun Woo W (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: International conference on neural information processing systems, pp 802–810 Shi X, Chen Z, Wang H, Yeung DY, Wong WK, chun Woo W (2015) Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: International conference on neural information processing systems, pp 802–810
go back to reference Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, vol 4 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, vol 4
go back to reference Taieb SB, Atiya AF (2015) A bias and variance analysis for multistep-ahead time series forecasting. IEEE Trans Neural Netw Learn Syst 27(1):62–76MathSciNetCrossRef Taieb SB, Atiya AF (2015) A bias and variance analysis for multistep-ahead time series forecasting. IEEE Trans Neural Netw Learn Syst 27(1):62–76MathSciNetCrossRef
go back to reference Wang B, Lu J, Yan Z, Luo H, Li T, Zheng Y, Zhang G (2019) Deep uncertainty quantification: A machine learning approach for weather forecasting. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2087–2095 Wang B, Lu J, Yan Z, Luo H, Li T, Zheng Y, Zhang G (2019) Deep uncertainty quantification: A machine learning approach for weather forecasting. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2087–2095
go back to reference Wang J, Song Y, Liu F, Hou R (2016) Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models. Renew Sustain Energy Rev 60:960–981CrossRef Wang J, Song Y, Liu F, Hou R (2016) Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models. Renew Sustain Energy Rev 60:960–981CrossRef
go back to reference Wen R, Torkkola K, Narayanaswamy B, Madeka D (2017) A multi-horizon quantile recurrent forecaster. Mach Learn Wen R, Torkkola K, Narayanaswamy B, Madeka D (2017) A multi-horizon quantile recurrent forecaster. Mach Learn
go back to reference Wilson T, Tan PN, Luo L (2018) A low rank weighted graph convolutional approach to weather prediction. In: 2018 ieee international conference on data mining (ICDM), IEEE, pp 627–636 Wilson T, Tan PN, Luo L (2018) A low rank weighted graph convolutional approach to weather prediction. In: 2018 ieee international conference on data mining (ICDM), IEEE, pp 627–636
go back to reference Zhang Y, Chen B, Zhao Y, Pan G (2018) Wind speed prediction of ipso-bp neural network based on lorenz disturbance. IEEE Access 6:53168–53179CrossRef Zhang Y, Chen B, Zhao Y, Pan G (2018) Wind speed prediction of ipso-bp neural network based on lorenz disturbance. IEEE Access 6:53168–53179CrossRef
go back to reference Zhang Z, Qin H, Liu Y, Wang Y, Yao L, Li Q, Li J, Pei S (2019) Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction. Energy Convers Manage 192:37–51CrossRef Zhang Z, Qin H, Liu Y, Wang Y, Yao L, Li Q, Li J, Pei S (2019) Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction. Energy Convers Manage 192:37–51CrossRef
go back to reference Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst 21(9):3848–3858CrossRef Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst 21(9):3848–3858CrossRef
Metadata
Title
A spatiotemporal deep neural network for fine-grained multi-horizon wind prediction
Authors
Fanling Huang
Yangdong Deng
Publication date
05-05-2023
Publisher
Springer US
Published in
Data Mining and Knowledge Discovery / Issue 4/2023
Print ISSN: 1384-5810
Electronic ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-023-00929-5

Other articles of this Issue 4/2023

Data Mining and Knowledge Discovery 4/2023 Go to the issue

Premium Partner