Skip to main content
Top
Published in: Neural Computing and Applications 1/2013

01-01-2013 | Cont. Dev. of Neural Compt. & Appln.

A support vector machine based MSM model for financial short-term volatility forecasting

Authors: Baohua Wang, Hejiao Huang, Xiaolong Wang

Published in: Neural Computing and Applications | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Financial time series forecasting has become a challenge because of its long-memory, thick tails and volatility persistence. Multifractal process has recently been proposed as a new formalism for this problem. An iterative Markov-Switching Multifractal (MSM) model was introduced to the literature. It is able to capture many of the important stylized features of the financial time series, including long-memory in volatility, volatility clustering, and return outliers. The model delivers stronger performance both in- and out-of-sample than GARCH-type models in long-term forecasts. To enhance MSM’s short-term prediction accuracy, this paper proposes a support vector machine (SVM) based MSM approach which exploits MSM model to forecast volatility and SVM to model the innovations. To verify the effectiveness of the proposed approach, two stock indexes in the Chinese A-share market are chosen as the forecasting targets. Comparing with some existing state-of-the-art models, the proposed approach gives superior results. It indicates that the proposed model provides a promising alternative to financial short-term volatility prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Poon S, Granger C (2003) Forecasting volatility in financial markets: a review. J Econ Lit 41(2):478–539CrossRef Poon S, Granger C (2003) Forecasting volatility in financial markets: a review. J Econ Lit 41(2):478–539CrossRef
2.
go back to reference Mandelbrot B (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(02):331–358MATHCrossRef Mandelbrot B (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(02):331–358MATHCrossRef
3.
go back to reference Vassilicos J, Hunt J (1993) Turbulent flamelet propagation. Combus Sci Technol 87(1):291–327CrossRef Vassilicos J, Hunt J (1993) Turbulent flamelet propagation. Combus Sci Technol 87(1):291–327CrossRef
4.
go back to reference Mandelbrot B, Fisher A, Calvet L (1997) The multifractal model of asset returns. Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www.ssrn.com Mandelbrot B, Fisher A, Calvet L (1997) The multifractal model of asset returns. Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://​www.​ssrn.​com
5.
go back to reference Calvet L, Fisher A (2002) Multifractality in asset returns: theory and evidence. Rev Econ Stat 84(3):381–406CrossRef Calvet L, Fisher A (2002) Multifractality in asset returns: theory and evidence. Rev Econ Stat 84(3):381–406CrossRef
7.
go back to reference Calvet L, Fisher A (2004) How to forecast long-run volatility: regime switching and the estimation of multifractal processes. J Finan Econom 2(1):49CrossRef Calvet L, Fisher A (2004) How to forecast long-run volatility: regime switching and the estimation of multifractal processes. J Finan Econom 2(1):49CrossRef
8.
go back to reference Calvet LE, Fisher AJ, Thompson SB (2006) Volatility comovement: a multifrequency approach. J Econom 131(1-2):179–215MathSciNetCrossRef Calvet LE, Fisher AJ, Thompson SB (2006) Volatility comovement: a multifrequency approach. J Econom 131(1-2):179–215MathSciNetCrossRef
9.
go back to reference Lux T, Kaizoji T (2007) Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching. J Econ Dyn Control 31(6):1808–1843MathSciNetMATHCrossRef Lux T, Kaizoji T (2007) Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching. J Econ Dyn Control 31(6):1808–1843MathSciNetMATHCrossRef
10.
go back to reference Idier J (2010) Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models. Eur J Finance 99999(1):1–22 Idier J (2010) Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models. Eur J Finance 99999(1):1–22
11.
go back to reference Vapnik V (2000) The nature of statistical learning theory. Springer, BerlinMATH Vapnik V (2000) The nature of statistical learning theory. Springer, BerlinMATH
12.
go back to reference Tay F, Cao L (2002) Modified support vector machines in financial time series forecasting. Neurocomputing 48(1–4):847–861MATHCrossRef Tay F, Cao L (2002) Modified support vector machines in financial time series forecasting. Neurocomputing 48(1–4):847–861MATHCrossRef
13.
go back to reference Kim K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1–2):307–319CrossRef Kim K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1–2):307–319CrossRef
14.
go back to reference Cao L, Tay F (2004) Support vector machine with adaptive parameters in financial time series forecasting. Neural Netw IEEE Trans 14(6):1506–1518CrossRef Cao L, Tay F (2004) Support vector machine with adaptive parameters in financial time series forecasting. Neural Netw IEEE Trans 14(6):1506–1518CrossRef
15.
go back to reference Chatfield C (1988) What is the best method of forecasting? J Appl Stat 15(1):19–38CrossRef Chatfield C (1988) What is the best method of forecasting? J Appl Stat 15(1):19–38CrossRef
16.
17.
go back to reference Makridakis S, Andersen A, Carbone R, Fildes R, Hibon M, Lewandowski R, Newton J, Parzen E, Winkler R (1982) The accuracy of extrapolation (time series) methods: results of a forecasting competition. J Forecast 1(2):111–153CrossRef Makridakis S, Andersen A, Carbone R, Fildes R, Hibon M, Lewandowski R, Newton J, Parzen E, Winkler R (1982) The accuracy of extrapolation (time series) methods: results of a forecasting competition. J Forecast 1(2):111–153CrossRef
18.
go back to reference Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175MATHCrossRef Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175MATHCrossRef
19.
go back to reference Granger C, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1(1):15–29MathSciNetMATHCrossRef Granger C, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1(1):15–29MathSciNetMATHCrossRef
20.
go back to reference Brailsford T, Faff R (1996) An evaluation of volatility forecasting techniques. J Bank Finance 20(3):419–438CrossRef Brailsford T, Faff R (1996) An evaluation of volatility forecasting techniques. J Bank Finance 20(3):419–438CrossRef
22.
go back to reference Galluccio S, Caldarelli G, Marsili M, Zhang Y (1997) Scaling in currency exchange. Phys A Stat Theor Phys 245(3-4):423–436MathSciNetCrossRef Galluccio S, Caldarelli G, Marsili M, Zhang Y (1997) Scaling in currency exchange. Phys A Stat Theor Phys 245(3-4):423–436MathSciNetCrossRef
23.
go back to reference Ghashghaie S, Breymann W, Peinke J, Talkner P, Dodge Y (1996) Turbulent cascades in foreign exchange markets. Nature 381(6585):767–770CrossRef Ghashghaie S, Breymann W, Peinke J, Talkner P, Dodge Y (1996) Turbulent cascades in foreign exchange markets. Nature 381(6585):767–770CrossRef
24.
go back to reference Pasquini M, Serva M (2000) Clustering of volatility as a multiscale phenomenon. Eur Phys J B 16(1):195–201CrossRef Pasquini M, Serva M (2000) Clustering of volatility as a multiscale phenomenon. Eur Phys J B 16(1):195–201CrossRef
25.
go back to reference Richards G (2000) The fractal structure of exchange rates: measurement and forecasting. J Int Finan Markets Inst Money 10:163–180MathSciNetCrossRef Richards G (2000) The fractal structure of exchange rates: measurement and forecasting. J Int Finan Markets Inst Money 10:163–180MathSciNetCrossRef
26.
go back to reference Bacry E, Delour J, Muzy J (2001) Multifractal random walk. Phys Rev E 64(2):26103CrossRef Bacry E, Delour J, Muzy J (2001) Multifractal random walk. Phys Rev E 64(2):26103CrossRef
28.
go back to reference Breymann W (2006) Theory of financial risk and derivative pricing: from statistical physics to risk management. J Am Stat Assoc 101(474):850–852CrossRef Breymann W (2006) Theory of financial risk and derivative pricing: from statistical physics to risk management. J Am Stat Assoc 101(474):850–852CrossRef
30.
go back to reference Riabushenko A (2008) Multifractal model: forecasting stock returns in the Ukrainian stock market. Master’s thesis, National University of Ukraine Riabushenko A (2008) Multifractal model: forecasting stock returns in the Ukrainian stock market. Master’s thesis, National University of Ukraine
31.
go back to reference Palm F, Zellner A (1992) To combine or not to combine? Issues of combining forecasts. J Forecast 11(8):687–701CrossRef Palm F, Zellner A (1992) To combine or not to combine? Issues of combining forecasts. J Forecast 11(8):687–701CrossRef
32.
go back to reference Wedding DK, Cios KJ (1996) Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10(2):149–168MATHCrossRef Wedding DK, Cios KJ (1996) Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10(2):149–168MATHCrossRef
33.
go back to reference Terui N, Van Dijk H (2002) Combined forecasts from linear and nonlinear time series models. Int J Forecast 18(3):421–438CrossRef Terui N, Van Dijk H (2002) Combined forecasts from linear and nonlinear time series models. Int J Forecast 18(3):421–438CrossRef
34.
go back to reference Terui N, Kariya T (1997) Testing Gaussianity and linearity of Japanese stock returns. Finan Eng Jpn Markets 4(3):203–232MATHCrossRef Terui N, Kariya T (1997) Testing Gaussianity and linearity of Japanese stock returns. Finan Eng Jpn Markets 4(3):203–232MATHCrossRef
35.
go back to reference Donaldson R, Kamstra M (1997) An artificial neural network-GARCH model for international stock return volatility. J Emp Finance 4(1):17–46CrossRef Donaldson R, Kamstra M (1997) An artificial neural network-GARCH model for international stock return volatility. J Emp Finance 4(1):17–46CrossRef
36.
go back to reference Bildirici M (2009) Improving forecasts of GARCH family models with the artificial neural networks: an application to the daily returns in Istanbul Stock Exchange. Exp Syst Appl 36(4):7355–7362CrossRef Bildirici M (2009) Improving forecasts of GARCH family models with the artificial neural networks: an application to the daily returns in Istanbul Stock Exchange. Exp Syst Appl 36(4):7355–7362CrossRef
37.
go back to reference Khashei M, Bijari M, Raissi Ardali G (2009) Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 72(4–6):956–967CrossRef Khashei M, Bijari M, Raissi Ardali G (2009) Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 72(4–6):956–967CrossRef
38.
go back to reference Lu C, Lee T, Chiu C (2009) Financial time series forecasting using independent component analysis and support vector regression. Decis Supp Syst 47(2):115–125CrossRef Lu C, Lee T, Chiu C (2009) Financial time series forecasting using independent component analysis and support vector regression. Decis Supp Syst 47(2):115–125CrossRef
39.
go back to reference Tay F, Cao L (2001) Application of support vector machines in financial time series forecasting. Omega 29(4):309–317CrossRef Tay F, Cao L (2001) Application of support vector machines in financial time series forecasting. Omega 29(4):309–317CrossRef
40.
go back to reference Mukherjee S, Osuna E, Girosi F (2002) Nonlinear prediction of chaotic time series using support vector machines. in: Neural networks for signal processing 1997. VII. Proceedings of the 1997 IEEE workshop, IEEE, pp 511–520 Mukherjee S, Osuna E, Girosi F (2002) Nonlinear prediction of chaotic time series using support vector machines. in: Neural networks for signal processing 1997. VII. Proceedings of the 1997 IEEE workshop, IEEE, pp 511–520
41.
go back to reference Tang L, Sheng H, Tang L (2009) GARCH prediction using spline wavelet support vector machine. Neural Comput Appl 18(8):913–917MathSciNetCrossRef Tang L, Sheng H, Tang L (2009) GARCH prediction using spline wavelet support vector machine. Neural Comput Appl 18(8):913–917MathSciNetCrossRef
42.
go back to reference Pérez-Cruz F, Afonso-Rodríguez J, Giner J (2003) Estimating GARCH models using support vector machines. Quant Finance 3(3):163–172MathSciNetCrossRef Pérez-Cruz F, Afonso-Rodríguez J, Giner J (2003) Estimating GARCH models using support vector machines. Quant Finance 3(3):163–172MathSciNetCrossRef
43.
go back to reference Chen S, Härdle WK, Jeong K (2010) Forecasting volatility with support vector machine-based GARCH model. J Forecast 29(4):406–433MathSciNetMATH Chen S, Härdle WK, Jeong K (2010) Forecasting volatility with support vector machine-based GARCH model. J Forecast 29(4):406–433MathSciNetMATH
44.
go back to reference Calvet L, Fisher A (2008) Multifractal volatility: theory, forecasting, and pricing. Academic Press, London Calvet L, Fisher A (2008) Multifractal volatility: theory, forecasting, and pricing. Academic Press, London
45.
go back to reference Vapnik V, Golowich S, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems 9, pp 281–287 Vapnik V, Golowich S, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems 9, pp 281–287
46.
go back to reference Jiang Z, Zhou W (2008) Multifractal analysis of Chinese stock volatilities based on the partition function approach. Phys A Stat Mech Appl 387(19–20):4881–4888CrossRef Jiang Z, Zhou W (2008) Multifractal analysis of Chinese stock volatilities based on the partition function approach. Phys A Stat Mech Appl 387(19–20):4881–4888CrossRef
48.
go back to reference West K, Cho D (1995) The predictive ability of several models of exchange rate volatility. J Econom 69(2):367–391CrossRef West K, Cho D (1995) The predictive ability of several models of exchange rate volatility. J Econom 69(2):367–391CrossRef
49.
go back to reference Hansen P, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7):873–889MathSciNetCrossRef Hansen P, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7):873–889MathSciNetCrossRef
Metadata
Title
A support vector machine based MSM model for financial short-term volatility forecasting
Authors
Baohua Wang
Hejiao Huang
Xiaolong Wang
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Neural Computing and Applications / Issue 1/2013
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-011-0742-z

Other articles of this Issue 1/2013

Neural Computing and Applications 1/2013 Go to the issue

Premium Partner