Skip to main content
Top
Published in: Progress in Artificial Intelligence 4/2019

29-05-2019 | Review

A survey on Bayesian network structure learning from data

Authors: Mauro Scanagatta, Antonio Salmerón, Fabio Stella

Published in: Progress in Artificial Intelligence | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A necessary step in the development of artificial intelligence is to enable a machine to represent how the world works, building an internal structure from data. This structure should hold a good trade-off between expressive power and querying efficiency. Bayesian networks have proven to be an effective and versatile tool for the task at hand. They have been applied to modeling knowledge in a variety of fields, ranging from bioinformatics to law, from image processing to economic risk analysis. A crucial aspect is learning the dependency graph of a Bayesian network from data. This task, called structure learning, is NP-hard and is the subject of intense, cutting-edge research. In short, it can be thought of as choosing one graph over the many candidates, grounding our reasoning over a collection of samples of the distribution generating the data. The number of possible graphs increases very quickly at the increase in the number of variables. Searching in this space, and selecting a graph over the others, becomes quickly burdensome. In this survey, we review the most relevant structure learning algorithms that have been proposed in the literature. We classify them according to the approach they follow for solving the problem and we also show alternatives for handling missing data and continuous variable. An extensive review of existing software tools is also given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abellán, J., Gómez-Olmedo, M., Moral, S.: Some variations on the PC algorithm. In: Third European Workshop on Probabilistic Graphical Models, pp. 1–8 (2006) Abellán, J., Gómez-Olmedo, M., Moral, S.: Some variations on the PC algorithm. In: Third European Workshop on Probabilistic Graphical Models, pp. 1–8 (2006)
2.
go back to reference Adel, T., de Campos, C.P.: Learning Bayesian networks with incomplete data by augmentation. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 1684–1690 (2017) Adel, T., de Campos, C.P.: Learning Bayesian networks with incomplete data by augmentation. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 1684–1690 (2017)
3.
go back to reference Alonso-Barba, J., de la Ossa, L., Gámez, J., Puerta, J.: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reason. 54, 429–451 (2013)MathSciNetCrossRef Alonso-Barba, J., de la Ossa, L., Gámez, J., Puerta, J.: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approx. Reason. 54, 429–451 (2013)MathSciNetCrossRef
4.
go back to reference Alonso-Barba, J.I., de la Ossa, L., Puerta, J.M.: Structural learning of Bayesian networks using local algorithms based on the space of orderings. Soft Comput. 15(10), 1881–1895 (2011)CrossRef Alonso-Barba, J.I., de la Ossa, L., Puerta, J.M.: Structural learning of Bayesian networks using local algorithms based on the space of orderings. Soft Comput. 15(10), 1881–1895 (2011)CrossRef
5.
go back to reference Alonso, J., de la Ossa, L., Gámez, J., Puerta, J.: On the use of local search heuristics to improve GES-based Bayesian network learning. Appl. Soft Comput. 64, 366–376 (2018)CrossRef Alonso, J., de la Ossa, L., Gámez, J., Puerta, J.: On the use of local search heuristics to improve GES-based Bayesian network learning. Appl. Soft Comput. 64, 366–376 (2018)CrossRef
6.
go back to reference Bacciu, D., Etchells, T., Lisboa, P., Whittaker, J.: Efficient identification of independence networks using mutual information. Comput. Stat. 28, 621–646 (2013)MathSciNetCrossRef Bacciu, D., Etchells, T., Lisboa, P., Whittaker, J.: Efficient identification of independence networks using mutual information. Comput. Stat. 28, 621–646 (2013)MathSciNetCrossRef
7.
go back to reference Ben-Daya, M., Al-Fawzan, M.: A tabu search approach for the flow shop scheduling problem. Eur. J. Oper. Res. 109(1), 88–95 (1998)CrossRef Ben-Daya, M., Al-Fawzan, M.: A tabu search approach for the flow shop scheduling problem. Eur. J. Oper. Res. 109(1), 88–95 (1998)CrossRef
8.
go back to reference Bøttcher, S.: Learning Bayesian networks with mixed variables. In: Proceedings of the Eighth International Workshop in Artificial Intelligence and Statistics (2001) Bøttcher, S.: Learning Bayesian networks with mixed variables. In: Proceedings of the Eighth International Workshop in Artificial Intelligence and Statistics (2001)
9.
go back to reference Bøttcher, S., Dethlefsen, C.: deal: A package for learning bayesian networks. J. Stat. Softw. 8, 1–40 (2003) Bøttcher, S., Dethlefsen, C.: deal: A package for learning bayesian networks. J. Stat. Softw. 8, 1–40 (2003)
10.
go back to reference Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pp. 52–60 (1991) Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, pp. 52–60 (1991)
11.
go back to reference Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief network construction from data. In: Proceedings of Artificial Intelligence and Statistics, pp. 83–90 (1997) Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief network construction from data. In: Proceedings of Artificial Intelligence and Statistics, pp. 83–90 (1997)
12.
go back to reference Chickering, D.: A transformational characterization of equivalent Bayesian network structures. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, pp. 87–98. Morgan Kaufmann (1995) Chickering, D.: A transformational characterization of equivalent Bayesian network structures. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, pp. 87–98. Morgan Kaufmann (1995)
13.
go back to reference Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-Hard. J. Mach. Learn. Res. 5, 1287–1330 (2014)MathSciNetMATH Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-Hard. J. Mach. Learn. Res. 5, 1287–1330 (2014)MathSciNetMATH
14.
go back to reference Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. Journal of Machine Learning Research 15, 3741–3782 (2014)MathSciNetMATH Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. Journal of Machine Learning Research 15, 3741–3782 (2014)MathSciNetMATH
15.
go back to reference Consortium, Elvira.: Elvira: An environment for creating and using probabilistic graphical models. In: Gámez, J., Salmerón, A. (eds) Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002) Consortium, Elvira.: Elvira: An environment for creating and using probabilistic graphical models. In: Gámez, J., Salmerón, A. (eds) Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)
16.
go back to reference Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393–405 (1990)MathSciNetCrossRef Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42, 393–405 (1990)MathSciNetCrossRef
17.
go back to reference Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)MATH Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)MATH
18.
go back to reference Cussens, J.: Bayesian network learning with cutting planes. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 153–160 (2011) Cussens, J.: Bayesian network learning with cutting planes. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 153–160 (2011)
20.
go back to reference de Campos, C.P., Corani, G., Scanagatta, M., Cuccu, M., Zaffalon, M.: Learning extended tree augmented naive structures. Int. J. Approx. Reason. 68, 153–163 (2015)MathSciNetCrossRef de Campos, C.P., Corani, G., Scanagatta, M., Cuccu, M., Zaffalon, M.: Learning extended tree augmented naive structures. Int. J. Approx. Reason. 68, 153–163 (2015)MathSciNetCrossRef
21.
go back to reference de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)MathSciNetMATH de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)MathSciNetMATH
22.
go back to reference de Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using constraints. In: Proceedings of the 26th International Conference on Machine Learning, pp. 113–120 (2009) de Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using constraints. In: Proceedings of the 26th International Conference on Machine Learning, pp. 113–120 (2009)
23.
go back to reference Elidan, G., Gould, S.: Learning bounded treewidth Bayesian networks. J. Mach. Learn. Res. 9, 2699–2731 (2008)MathSciNetMATH Elidan, G., Gould, S.: Learning bounded treewidth Bayesian networks. J. Mach. Learn. Res. 9, 2699–2731 (2008)MathSciNetMATH
24.
go back to reference Fernández, A., Nielsen, J.D., Salmerón, A.: Learning Bayesian networks for regression from incomplete databases. Int. J. Uncertain. Fuzziness Knowl. Based Syst 18(1), 69–86 (2010)MathSciNetCrossRef Fernández, A., Nielsen, J.D., Salmerón, A.: Learning Bayesian networks for regression from incomplete databases. Int. J. Uncertain. Fuzziness Knowl. Based Syst 18(1), 69–86 (2010)MathSciNetCrossRef
25.
go back to reference Fernández, A., Pérez-Bernabé, I., Salmerón, A.: On Using the PC Algorithm for Learning Continuous Bayesian Networks: An Experimental Analysis, CAEPIA’13. Lecture Notes in Computer Science 8109, 342–351 (2013) Fernández, A., Pérez-Bernabé, I., Salmerón, A.: On Using the PC Algorithm for Learning Continuous Bayesian Networks: An Experimental Analysis, CAEPIA’13. Lecture Notes in Computer Science 8109, 342–351 (2013)
26.
go back to reference Fernández, A., Salmerón, A.: Extension of Bayesian network classifiers to regression problems. In: Geffner, H., Prada, R., Alexandre, I.M., David, N. (eds) Advances in Artificial Intelligence—IBERAMIA 2008, Vol. 5290 of Lecture Notes in Artificial Intelligence, pp. 83–92. Springer (2008) Fernández, A., Salmerón, A.: Extension of Bayesian network classifiers to regression problems. In: Geffner, H., Prada, R., Alexandre, I.M., David, N. (eds) Advances in Artificial Intelligence—IBERAMIA 2008, Vol. 5290 of Lecture Notes in Artificial Intelligence, pp. 83–92. Springer (2008)
27.
go back to reference Friedman, N.: The Bayesian structural EM algorithm. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 129–138 (1998) Friedman, N.: The Bayesian structural EM algorithm. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 129–138 (1998)
28.
go back to reference Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)CrossRef Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)CrossRef
29.
go back to reference Hand, D.J., Yu, K.: Idiot’s Bayes–not so stupid after all? Int. Stat. Rev. 69(3), 385–398 (2001)MATH Hand, D.J., Yu, K.: Idiot’s Bayes–not so stupid after all? Int. Stat. Rev. 69(3), 385–398 (2001)MATH
30.
go back to reference He, Y., Jia, J., Geng, Z.: Structural learning of causal networks. Behaviormetrika 44, 287–305 (2017)CrossRef He, Y., Jia, J., Geng, Z.: Structural learning of causal networks. Behaviormetrika 44, 287–305 (2017)CrossRef
31.
go back to reference Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)MATH Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)MATH
32.
go back to reference Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure using LP relaxations. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 358–365 (2010) Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure using LP relaxations. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 358–365 (2010)
33.
go back to reference Jaeger, M.: Probabilistic decision graphs—combining verification and ai techniques for probabilistic inference. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12, 19–42 (2004)MathSciNetCrossRef Jaeger, M.: Probabilistic decision graphs—combining verification and ai techniques for probabilistic inference. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12, 19–42 (2004)MathSciNetCrossRef
34.
go back to reference Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8, 613–636 (2007)MATH
35.
go back to reference Koivisto, M.: Parent assignment is hard for the MDL, AIC, and NML costs. In: Proceedings of the 29th Annual Conference On Learning Theory, vol. 4005, pp. 289–303 (2016) Koivisto, M.: Parent assignment is hard for the MDL, AIC, and NML costs. In: Proceedings of the 29th Annual Conference On Learning Theory, vol. 4005, pp. 289–303 (2016)
36.
go back to reference Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)MathSciNetMATH Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)MathSciNetMATH
37.
go back to reference Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Boston (2009)MATH Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Boston (2009)MATH
38.
go back to reference Korhonen, J., Parviainen, P.: Exact learning of bounded treewidth Bayesian networks. In: Artificial Intelligence and Statistics, pp 370–378 (2013) Korhonen, J., Parviainen, P.: Exact learning of bounded treewidth Bayesian networks. In: Artificial Intelligence and Statistics, pp 370–378 (2013)
39.
go back to reference Kwisthout, J. H.P., Bodlaender, H.L., van der Gaag, L.C.: The necessity of bounded treewidth for efficient inference in Bayesian networks. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 237–242 (2010) Kwisthout, J. H.P., Bodlaender, H.L., van der Gaag, L.C.: The necessity of bounded treewidth for efficient inference in Bayesian networks. In: Proceedings of the 19th European Conference on Artificial Intelligence, pp. 237–242 (2010)
40.
go back to reference Lauritzen, S., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Stat. 17, 31–57 (1989)MathSciNetCrossRef Lauritzen, S., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Ann. Stat. 17, 31–57 (1989)MathSciNetCrossRef
41.
go back to reference Lee, C., van Beek, P.: Metaheuristics for score-and-search Bayesian network structure learning. In: Proceedings of the 30th Canadian Conference on Artificial Intelligence, pp. 129–141 (2017) Lee, C., van Beek, P.: Metaheuristics for score-and-search Bayesian network structure learning. In: Proceedings of the 30th Canadian Conference on Artificial Intelligence, pp. 129–141 (2017)
42.
go back to reference Madsen, A.L., Jensen, F., Salmerón, A., Langseth, H., Nielsen, T.D.: A parallel algorithm for Bayesian network structure learning from large data sets. Knowl. Based Syst. 117, 46–55 (2017)CrossRef Madsen, A.L., Jensen, F., Salmerón, A., Langseth, H., Nielsen, T.D.: A parallel algorithm for Bayesian network structure learning from large data sets. Knowl. Based Syst. 117, 46–55 (2017)CrossRef
43.
go back to reference Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., Myllymäki, P.: Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction. Mach. Learn. 107, 1–37 (2018)MathSciNetCrossRef Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., Myllymäki, P.: Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction. Mach. Learn. 107, 1–37 (2018)MathSciNetCrossRef
44.
go back to reference Malone, B.M.: Learning optimal Bayesian networks with heuristic search. Ph.D. thesis, Mississippi State University (2012) Malone, B.M.: Learning optimal Bayesian networks with heuristic search. Ph.D. thesis, Mississippi State University (2012)
45.
go back to reference Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard , P. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Vol. 2143 of Lecture Notes in Artificial Intelligence, pp. 156–167. Springer (2001) Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard , P. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Vol. 2143 of Lecture Notes in Artificial Intelligence, pp. 156–167. Springer (2001)
46.
go back to reference Nie, S., de Campos, C.P., Ji, Q.: Learning bounded treewidth Bayesian networks via sampling. In: Proceedings of the 13th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 387–396 (2015) Nie, S., de Campos, C.P., Ji, Q.: Learning bounded treewidth Bayesian networks via sampling. In: Proceedings of the 13th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 387–396 (2015)
47.
go back to reference Nie, S., Mauá, D.D., de Campos, C.P., Ji, Q.: Advances in learning Bayesian networks of bounded treewidth. Adv. Neural Inf. Process. Syst. 27, 2285–2293 (2014) Nie, S., Mauá, D.D., de Campos, C.P., Ji, Q.: Advances in learning Bayesian networks of bounded treewidth. Adv. Neural Inf. Process. Syst. 27, 2285–2293 (2014)
48.
go back to reference Nielsen, J.D., Rumí, R., Salmerón, A.: Structural-EM for learning PDG models from incomplete data. Int. J. Approx. Reason. 51(5), 515–530 (2010)MathSciNetCrossRef Nielsen, J.D., Rumí, R., Salmerón, A.: Structural-EM for learning PDG models from incomplete data. Int. J. Approx. Reason. 51(5), 515–530 (2010)MathSciNetCrossRef
49.
go back to reference Parviainen, P., Farahani, H.S., Lagergren, J.: Learning bounded treewidth Bayesian networks using integer linear programming. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, pp. 751–759 (2014) Parviainen, P., Farahani, H.S., Lagergren, J.: Learning bounded treewidth Bayesian networks using integer linear programming. In: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, pp. 751–759 (2014)
50.
go back to reference Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam (1988)MATH Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam (1988)MATH
51.
go back to reference Pearl, J.: Causality: models, reasoning and inference. Econom. Theory 19(46), 675–685 (2003) Pearl, J.: Causality: models, reasoning and inference. Econom. Theory 19(46), 675–685 (2003)
53.
go back to reference Pourret, O., Naïm, P., Marcot, B.: Bayesian Networks: A Practical Guide to Applications. Wiley, Hoboken (2008)CrossRef Pourret, O., Naïm, P., Marcot, B.: Bayesian Networks: A Practical Guide to Applications. Wiley, Hoboken (2008)CrossRef
54.
go back to reference Robinson, R.W.: Counting Labeled Acyclic Digraphs, New Directions in the Theory of Graphs, pp. 28–43. Academic Press, New York (1973) Robinson, R.W.: Counting Labeled Acyclic Digraphs, New Directions in the Theory of Graphs, pp. 28–43. Academic Press, New York (1973)
55.
go back to reference Romero, V., Rumí, R., Salmerón, A.: Learning hybrid Bayesian networks using mixtures of truncated exponentials. Int. J. Approx. Reason. 42, 54–68 (2006)MathSciNetCrossRef Romero, V., Rumí, R., Salmerón, A.: Learning hybrid Bayesian networks using mixtures of truncated exponentials. Int. J. Approx. Reason. 42, 54–68 (2006)MathSciNetCrossRef
56.
go back to reference Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.: Learning treewidth-bounded Bayesian networks with thousands of variables. Adv. Neural Inf. Process. Syst. 29, 1462–1470 (2016) Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.: Learning treewidth-bounded Bayesian networks with thousands of variables. Adv. Neural Inf. Process. Syst. 29, 1462–1470 (2016)
57.
go back to reference Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.: Approximate structure learning for large Bayesian networks. Mach. Learn. 107, 1–19 (2018)MathSciNetCrossRef Scanagatta, M., Corani, G., de Campos, C.P., Zaffalon, M.: Approximate structure learning for large Bayesian networks. Mach. Learn. 107, 1–19 (2018)MathSciNetCrossRef
58.
go back to reference Scanagatta, M., Corani, G., Zaffalon, M.: Improved local search in Bayesian networks structure learning. In:Proceedings of the 3rd International Workshop on Advanced Methodologies for Bayesian Networks, pp. 45–56 (2017) Scanagatta, M., Corani, G., Zaffalon, M.: Improved local search in Bayesian networks structure learning. In:Proceedings of the 3rd International Workshop on Advanced Methodologies for Bayesian Networks, pp. 45–56 (2017)
59.
go back to reference Scanagatta, M., Corani, G., Zaffalon, M., Yoo, J., Kang, U.: Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets. Int. J. Approx. Reason. 95, 152–166 (2018)MathSciNetCrossRef Scanagatta, M., Corani, G., Zaffalon, M., Yoo, J., Kang, U.: Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets. Int. J. Approx. Reason. 95, 152–166 (2018)MathSciNetCrossRef
60.
go back to reference Scanagatta, M., de Campos, C.P., Corani, G., Zaffalon, M.: Learning Bayesian networks with thousands of variables. Adv. Neural Inf. Process. Syst. 28, 1855–1863 (2015) Scanagatta, M., de Campos, C.P., Corani, G., Zaffalon, M.: Learning Bayesian networks with thousands of variables. Adv. Neural Inf. Process. Syst. 28, 1855–1863 (2015)
62.
go back to reference Scutari, M.: Bayesian network constraint-based structure learning algorithms: Parallel and optimised implementations in the bnlearn R package. CoRR (2014). arXiv:1406.7648 Scutari, M.: Bayesian network constraint-based structure learning algorithms: Parallel and optimised implementations in the bnlearn R package. CoRR (2014). arXiv:​1406.​7648
63.
go back to reference Silander, T., Myllymaki, P.: A simple approach for finding the globally optimal Bayesian network structure. In: Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pp. 445–452 (2006) Silander, T., Myllymaki, P.: A simple approach for finding the globally optimal Bayesian network structure. In: Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pp. 445–452 (2006)
64.
go back to reference Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Boston (2000)MATH Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Boston (2000)MATH
65.
go back to reference Steck, H., Tresp, V.: Bayesian belief networks for data mining. University of Magdeburg, pp 145–154 (1996) Steck, H., Tresp, V.: Bayesian belief networks for data mining. University of Magdeburg, pp 145–154 (1996)
66.
go back to reference Teyssier, M., Koller, D.: Ordering-based search: a simple and effective algorithm for learning Bayesian networks. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 584–590 (2005) Teyssier, M., Koller, D.: Ordering-based search: a simple and effective algorithm for learning Bayesian networks. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pp. 584–590 (2005)
67.
go back to reference Yuan, C., Malone, B.: An improved admissible heuristic for learning optimal Bayesian networks. In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pp. 924–933 (2012) Yuan, C., Malone, B.: An improved admissible heuristic for learning optimal Bayesian networks. In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, pp. 924–933 (2012)
68.
go back to reference Yuan, C., Malone, B., Wu, X.: Learning optimal Bayesian networks using A* search. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 2186–2191 (2011) Yuan, C., Malone, B., Wu, X.: Learning optimal Bayesian networks using A* search. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 2186–2191 (2011)
69.
go back to reference Zheng, X., Aragam, B., Ravikumar, P., Xing, E.: DAGs with no tears: Continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, pp. 9492–9503 (2018) Zheng, X., Aragam, B., Ravikumar, P., Xing, E.: DAGs with no tears: Continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, pp. 9492–9503 (2018)
Metadata
Title
A survey on Bayesian network structure learning from data
Authors
Mauro Scanagatta
Antonio Salmerón
Fabio Stella
Publication date
29-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Progress in Artificial Intelligence / Issue 4/2019
Print ISSN: 2192-6352
Electronic ISSN: 2192-6360
DOI
https://doi.org/10.1007/s13748-019-00194-y

Other articles of this Issue 4/2019

Progress in Artificial Intelligence 4/2019 Go to the issue

Premium Partner