Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 6/2012

01-12-2012

A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe-S Binary Melts Based on the Atom-Molecule Coexistence Theory

Authors: Xue-Min Yang, Meng Zhang, Peng-Cheng Li, Jin-Yan Li, Jian-Liang Zhang, Jian Zhang

Published in: Metallurgical and Materials Transactions B | Issue 6/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A thermodynamic model for calculating the mass action concentrations of structural units in Fe-S binary melts based on the atom-molecule coexistence theory, i.e., AMCT-N i model, has been developed and verified through a comparison with the reported activities of both S and Fe in Fe-S binary melts with changing mole fraction \( x_{\text{S}} \) of S from 0.0 to 0.095 at temperatures of 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C) from the literature. The calculated mass action concentration \( N_{\text{S}} \) of S is much smaller than the reported activity \( a_{\text{R, S}} \) of S in Fe-S binary melts with changing mole fraction \( x_{\text{S}} \) of S from 0.0 to 0.095. The calculated mass action concentration \( N_{\text{S}} \) of S can correlate the reliable 1:1 corresponding relationship with the reported activity \( a_{\text{R, S}} \) or \( a_{\%,\text {S}} \) of S through the introduced transformation coefficients with absolutely mathematical meaning or through the defined comprehensive mass action concentration of total S with explicitly physicochemical meaning. The calculated mass action concentrations \( N_{i} \) of structural units from the developed AMCT-N i thermodynamic model can be applied to describe or predict the reaction abilities of structural units in Fe-S binary melts. The reaction abilities of Fe and S show a competitive relationship each other in Fe-S binary melts in a temperature range from 1773 K to 1873 K (1500 °C to 1600 °C). The calculated mass action concentration \( N_{{{\text{FeS}}_{ 2} }} \) of FeSis very small and can be ignored because FeScan be incongruently decomposed above 1016 K (743 °C). The very small values for the calculated mass action concentrations \( N_{{{\text{FeS}}_{ 2} }} \) of FeSin a range of mole fraction \( x_{\text{S}} \) of S from 0.0 to 1.0 as well as a maximum value for the calculated mass action concentration \( N_{\text{FeS}} \) of FeS with mole fraction \( x_{\text{S}} \) of S as 0.5 are coincident with diagram phase of Fe-S binary melts. A spindle-type relationship between the calculated mass action concentration \( N_{i} \) and the calculated equilibrium mole number \( n_{i} \) can be found for FeS and FeSin Fe-S binary melts. The Raoultian activity coefficient \( \gamma_{S}^{0} \) of S relative to pure liquid S(l) as standard state and the infinitely dilute solution as reference state in Fe-S binary melts can be determined as 1.0045 in a temperature range from 1773 K to 1873 K (1500 °C to 1600 °C). The standard molar Gibbs free energy change \( \Updelta_{\text{sol}} G_{{{\text{m, S }}({\text{l}}) \to [{\text{S}}]_{{ \, [{\text{pct \, S}}] = 1.0}} }}^{{\Uptheta,\%}} \) of dissolving liquid S for forming [pct S] as 1.0 in Fe-S binary melts relative to 1 mass percentage of S as standard state can be formulated as \( \Updelta_{\text{sol}} G_{{{\text{m, S }}({\text{l}}) \to [{\text{S}}]_{{ \, [{\text{pct \, S] }} = \, 1.0}} }}^{{\Uptheta,\, \%}} \,\, = -0.219\,-\,33.70T\,\,\left( {\text{J/mol}} \right).\)

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Waldner and A.D. Pelton: J. Phase Equilib., 2005, vol. 26, no. 1, pp. 23–38. P. Waldner and A.D. Pelton: J. Phase Equilib., 2005, vol. 26, no. 1, pp. 23–38.
2.
go back to reference O. Kubaschewski and H. Okamoto: Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, OH, 1993, pp. 364–66. O. Kubaschewski and H. Okamoto: Phase Diagrams of Binary Iron Alloys. ASM International, Materials Park, OH, 1993, pp. 364–66.
3.
go back to reference L.F. Power and H.A. Fine: Miner. Sci. Eng., 1976, vol. 8, no. 2, pp. 106–28. L.F. Power and H.A. Fine: Miner. Sci. Eng., 1976, vol. 8, no. 2, pp. 106–28.
4.
go back to reference F. Grønvold and S. Stølen: J. Chem. Thermodyn., 1992, vol. 24, no. 9, pp. 913–36.CrossRef F. Grønvold and S. Stølen: J. Chem. Thermodyn., 1992, vol. 24, no. 9, pp. 913–36.CrossRef
5.
go back to reference H. Nakazawa and N. Morimoto: Mater. Res. Bull., 1971, vol. 6, no. 5, pp. 345–58.CrossRef H. Nakazawa and N. Morimoto: Mater. Res. Bull., 1971, vol. 6, no. 5, pp. 345–58.CrossRef
6.
go back to reference M. Hillert and L.-I. Staffansson: Metall. Trans. B, 1975, vol. 6B, pp. 37–41. M. Hillert and L.-I. Staffansson: Metall. Trans. B, 1975, vol. 6B, pp. 37–41.
7.
go back to reference R.C. Sharma and Y.A. Chang: Metall. Trans. B, 1979, vol. 10B, pp. 103–08.CrossRef R.C. Sharma and Y.A. Chang: Metall. Trans. B, 1979, vol. 10B, pp. 103–08.CrossRef
8.
go back to reference A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: Metall. Trans. B, 1981, vol. 12B, pp. 745–54.CrossRef A.F. Guillermet, M. Hillert, B. Jansson, and B. Sundman: Metall. Trans. B, 1981, vol. 12B, pp. 745–54.CrossRef
9.
go back to reference Y.Y. Chuang, K.C. Hsieh, and Y.A. Chang: Metall. Trans. B, 1985, vol. 16B, pp. 277–85.CrossRef Y.Y. Chuang, K.C. Hsieh, and Y.A. Chang: Metall. Trans. B, 1985, vol. 16B, pp. 277–85.CrossRef
10.
go back to reference F. Kongoli, Y. Dessureault, and A.D. Pelton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 591–601.CrossRef F. Kongoli, Y. Dessureault, and A.D. Pelton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 591–601.CrossRef
11.
go back to reference J. Chipman and T. Li: Trans. ASM., 1937, vol. 25, no. 1, pp. 435–63. J. Chipman and T. Li: Trans. ASM., 1937, vol. 25, no. 1, pp. 435–63.
12.
go back to reference J. White and H. Skelly: J. Iron Steel Inst., 1947, vol. 155, pp. 201–12. J. White and H. Skelly: J. Iron Steel Inst., 1947, vol. 155, pp. 201–12.
13.
go back to reference J.P. Morris and A.J. Williams: Trans. ASM., 1949, vol. 41, pp. 1425–39. J.P. Morris and A.J. Williams: Trans. ASM., 1949, vol. 41, pp. 1425–39.
14.
go back to reference J.P. Morris and R.C. Buehl: Trans. AIME, 1950, vol. 188, pp. 317–22. J.P. Morris and R.C. Buehl: Trans. AIME, 1950, vol. 188, pp. 317–22.
15.
go back to reference C.W. Sherman, H.I. Elvander, and J. Chipman: Trans. AIME, 1950, vol. 188, pp. 334–40. C.W. Sherman, H.I. Elvander, and J. Chipman: Trans. AIME, 1950, vol. 188, pp. 334–40.
16.
go back to reference T. Rosenqvist and B.L. Dunicz: Trans. AIME, 1952, vol. 194, pp. 604–08. T. Rosenqvist and B.L. Dunicz: Trans. AIME, 1952, vol. 194, pp. 604–08.
17.
go back to reference T. Rosenqvist: J. Iron Steel Inst., 1954, vol. 176, no. 1, pp. 37–57. T. Rosenqvist: J. Iron Steel Inst., 1954, vol. 176, no. 1, pp. 37–57.
18.
go back to reference E.T. Turkdogan, S. Ignatowicz, and J. Pearson: J. Iron Steel Inst., 1955, vol. 180, no. 4, pp. 349–54. E.T. Turkdogan, S. Ignatowicz, and J. Pearson: J. Iron Steel Inst., 1955, vol. 180, no. 4, pp. 349–54.
19.
go back to reference J.A. Cordier and J. Chipman: Trans. AIME, 1955, vol. 202, pp. 905–07. J.A. Cordier and J. Chipman: Trans. AIME, 1955, vol. 202, pp. 905–07.
20.
go back to reference N.A. Gokcen: J. Metals, 1956, vol. 8, no. 12, pp. 1558–67. N.A. Gokcen: J. Metals, 1956, vol. 8, no. 12, pp. 1558–67.
21.
go back to reference A. Adachi and Z. Morita: Tetsu-to-Hagané, 1958, vol. 44, no. 6, pp. 637–42. A. Adachi and Z. Morita: Tetsu-to-Hagané, 1958, vol. 44, no. 6, pp. 637–42.
22.
go back to reference C.B. Alcock and L.L. Cheng: J. Iron Steel Inst., 1960 vol. 195, no. 2, pp. 169–73. C.B. Alcock and L.L. Cheng: J. Iron Steel Inst., 1960 vol. 195, no. 2, pp. 169–73.
23.
go back to reference W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1965, vol. 36, no. 10, pp. 695–98. W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1965, vol. 36, no. 10, pp. 695–98.
24.
go back to reference H. Schenck and H. Hinze: Arch. Eisenhuttenwes, 1965, vol. 37, no. 7, pp. 545–50. H. Schenck and H. Hinze: Arch. Eisenhuttenwes, 1965, vol. 37, no. 7, pp. 545–50.
25.
go back to reference W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1966, vol. 37, no. 10, pp. 779–81. W.A. Fischer and W. Ackermann: Arch. Eisenhuttenwes, 1966, vol. 37, no. 10, pp. 779–81.
26.
go back to reference K. Yoshida, S. Ban-ya, and T. Fuwa: Tetsu-to-Hagané, 1967, vol. 53, no. 7, pp. 783–86. K. Yoshida, S. Ban-ya, and T. Fuwa: Tetsu-to-Hagané, 1967, vol. 53, no. 7, pp. 783–86.
27.
go back to reference E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1665–72. E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1665–72.
28.
go back to reference W.L. Worrell and E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1673–78. W.L. Worrell and E.T. Turkdogan: Trans. TMS-AIME, 1968, vol. 242, no. 7, pp. 1673–78.
29.
go back to reference S. Ban-ya and J. Chipman: Trans. TMS-AIME, 1968, vol. 242, no. 5, pp. 940–46. S. Ban-ya and J. Chipman: Trans. TMS-AIME, 1968, vol. 242, no. 5, pp. 940–46.
30.
go back to reference E. Ichise, K. Kitao, and T. Mori: Tetsu-to-Hagané, 1974, vol. 60, no. 14, pp. 2119–25. E. Ichise, K. Kitao, and T. Mori: Tetsu-to-Hagané, 1974, vol. 60, no. 14, pp. 2119–25.
31.
go back to reference S. Ikada, S. Hayashi, and T. Uno: Tetsu-to-Hagané, 1975, vol. 61, no. 10, pp. 2321–27. S. Ikada, S. Hayashi, and T. Uno: Tetsu-to-Hagané, 1975, vol. 61, no. 10, pp. 2321–27.
32.
go back to reference F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1976, vol. 62, no. 11, p. S560. F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1976, vol. 62, no. 11, p. S560.
33.
go back to reference F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1981, vol. 67, no. 6, pp. 736–45. F. Ishii and T. Fuwa: Tetsu-to-Hagané, 1981, vol. 67, no. 6, pp. 736–45.
34.
go back to reference S. Hayashi and T. Uno: Tetsu-to-Hagané, 1982, vol. 68, no. 13, pp. 1728–36. S. Hayashi and T. Uno: Tetsu-to-Hagané, 1982, vol. 68, no. 13, pp. 1728–36.
35.
go back to reference J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 1998. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 1998.
36.
go back to reference J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40–70. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40–70.
37.
go back to reference X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, no. 12, pp. 1828–37.CrossRef X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, no. 12, pp. 1828–37.CrossRef
38.
go back to reference C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, no. 10, pp. 1362–72.CrossRef C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, no. 10, pp. 1362–72.CrossRef
39.
go back to reference X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1150–80.CrossRef X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1150–80.CrossRef
40.
go back to reference X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 241–66.CrossRef X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and J. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 241–66.CrossRef
41.
go back to reference X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738–70.CrossRef X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L Zhang, and J.C. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738–70.CrossRef
42.
go back to reference X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 951–76.CrossRef X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 951–76.CrossRef
43.
go back to reference X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 3, pp. 244–58.CrossRef X.M. Yang, C.B. Shi, M. Zhang, and J. Zhang: Steel Res. Int., 2012, vol. 83, no. 3, pp. 244–58.CrossRef
44.
go back to reference X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., in press. X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, and J. Zhang: Steel Res. Int., in press.
45.
go back to reference J. Zhang: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 2, pp. 86–91. J. Zhang: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 2, pp. 86–91.
46.
go back to reference J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 1, pp. 11–14. J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 1, pp. 11–14.
47.
go back to reference J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 3, pp. 174–77. J. Zhang: J. Univ. Sci. Technol. Beijing, 1999, vol. 6, no. 3, pp. 174–77.
48.
go back to reference J. Zhang and R. Zhu: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 1, pp. 10–3. J. Zhang and R. Zhu: J. Univ. Sci. Technol. Beijing, 2000, vol. 7, no. 1, pp. 10–3.
49.
go back to reference S.K. Wei: Thermodynamics of Metallurgical Processes, Science Press, Beijing, China, 2010. S.K. Wei: Thermodynamics of Metallurgical Processes, Science Press, Beijing, China, 2010.
50.
go back to reference J.Y. Zhang: Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, China, 2004. J.Y. Zhang: Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, China, 2004.
51.
go back to reference X.H. Huang: Principles of Ironmaking and Steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, China, 2005. X.H. Huang: Principles of Ironmaking and Steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, China, 2005.
52.
go back to reference T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, OH, 1990. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, OH, 1990.
53.
go back to reference J.F. Elliott and M. Gleiser: Thermochemistry for Steelmaking, vol. 1, Pergamon Press, London, U.K., 1960. J.F. Elliott and M. Gleiser: Thermochemistry for Steelmaking, vol. 1, Pergamon Press, London, U.K., 1960.
54.
go back to reference O. Kubaschewski, E.L.L. Evans, and B. Alcock: Metallurgical Thermochemistry, Pergamon Press, London, U.K., 1967. O. Kubaschewski, E.L.L. Evans, and B. Alcock: Metallurgical Thermochemistry, Pergamon Press, London, U.K., 1967.
55.
go back to reference M. Nagamori, T. Hatakeyama, and M. Kameda: Trans. JIM, 1970, vol. 11, no. 3, pp. 190–94. M. Nagamori, T. Hatakeyama, and M. Kameda: Trans. JIM, 1970, vol. 11, no. 3, pp. 190–94.
56.
go back to reference T. Rosenqvist and T. Hartvig: Part II, Meddelelse Nr. 12 fra Metallurisk Komite, Trondheim, Norway, 1958. T. Rosenqvist and T. Hartvig: Part II, Meddelelse Nr. 12 fra Metallurisk Komite, Trondheim, Norway, 1958.
57.
go back to reference F.D. Richardson and J.H.E. Jeffes: J. Iron Steel Inst., 1952, vol. 171, pp. 165–75. F.D. Richardson and J.H.E. Jeffes: J. Iron Steel Inst., 1952, vol. 171, pp. 165–75.
58.
go back to reference K.K. Kelley: Bull. U.S. Bur. Mines, 1937, no. 406. K.K. Kelley: Bull. U.S. Bur. Mines, 1937, no. 406.
59.
go back to reference D.R. Stull and H. Prophet: JANAF Thermochemical Tables, 2nd ed., U.S. National Bureau of Standards, Washington, DC, 1971. D.R. Stull and H. Prophet: JANAF Thermochemical Tables, 2nd ed., U.S. National Bureau of Standards, Washington, DC, 1971.
60.
go back to reference I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1977. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, Germany, 1977.
Metadata
Title
A Thermodynamic Model for Representation Reaction Abilities of Structural Units in Fe-S Binary Melts Based on the Atom-Molecule Coexistence Theory
Authors
Xue-Min Yang
Meng Zhang
Peng-Cheng Li
Jin-Yan Li
Jian-Liang Zhang
Jian Zhang
Publication date
01-12-2012
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 6/2012
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-012-9707-6

Other articles of this Issue 6/2012

Metallurgical and Materials Transactions B 6/2012 Go to the issue

Premium Partners