Skip to main content
Top
Published in: Journal of Materials Science 18/2017

05-06-2017 | Energy materials

A three-dimensional network structure Si/C anode for Li-ion batteries

Authors: Ying Jiang, Shi Chen, Daobin Mu, Borong Wu, Qi Liu, Zhikun Zhao, Feng Wu

Published in: Journal of Materials Science | Issue 18/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A three-dimensional (3D) network structure Si/C anode with large pores is fabricated by using gelatin-PVA as carbon source. Silicon particles are embedded in the 3D network carbon skeleton. Gaussian calculation and FTIR test are employed to analyze the role of molecules interaction in forming the 3D network structure. The modified Si/C anode exhibits a reversible capacity of 830 mA h g−1 after 100 cycles at 400 mA g−1, and a capacity of 810 mA h g−1 at 1.6 A g−1 and 521 mA h g−1 at 3.2 A g−1. The 3D network structure with large pores benefits the electrolyte penetration, and the carbon coating layer avoids the direct contact of silicon particles with the electrolyte. The carbon layer can also help buffer the volume expansion of silicon, which is good to the cycling stability. All these aspects contribute to the enhanced electrochemical performance of the Si anode.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef
2.
go back to reference Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRef Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRef
3.
go back to reference Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103CrossRef Ashuri M, He Q, Shaw LL (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103CrossRef
4.
go back to reference Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039CrossRef Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039CrossRef
5.
go back to reference Sun F, Markotter H, Dong K, Manke I, Hilger A, Kardjilov N, Banhart J (2016) Investigation of failure mechanisms in silicon based half cells during the first cycle by micro X-ray tomography and radiography. J Power Sources 321:174–184CrossRef Sun F, Markotter H, Dong K, Manke I, Hilger A, Kardjilov N, Banhart J (2016) Investigation of failure mechanisms in silicon based half cells during the first cycle by micro X-ray tomography and radiography. J Power Sources 321:174–184CrossRef
6.
go back to reference Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett 7:A93CrossRef Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett 7:A93CrossRef
7.
go back to reference Tang H, Zhang J, Zhang YJ, Xiong QQ, Tong YY, Li Y, Wang XL, Gu CD, Tu JP (2015) Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. J Power Sources 286:431–437CrossRef Tang H, Zhang J, Zhang YJ, Xiong QQ, Tong YY, Li Y, Wang XL, Gu CD, Tu JP (2015) Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. J Power Sources 286:431–437CrossRef
8.
go back to reference Tang H, Zhang YJ, Xiong QQ, Cheng JD, Zhang Q, Wang XL, Gu CD, Tu JP (2015) Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries. Electrochim Acta 156:86–93CrossRef Tang H, Zhang YJ, Xiong QQ, Cheng JD, Zhang Q, Wang XL, Gu CD, Tu JP (2015) Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries. Electrochim Acta 156:86–93CrossRef
9.
go back to reference Zhang W, Wu L, Du L, Yue L, Guan R, Zhang Q, Hou G, Shao R (2016) Layer-by-layer assembly modification to prepare firmly bonded Si–graphene composites for high-performance anodes. RSC Adv 6:4835–4842CrossRef Zhang W, Wu L, Du L, Yue L, Guan R, Zhang Q, Hou G, Shao R (2016) Layer-by-layer assembly modification to prepare firmly bonded Si–graphene composites for high-performance anodes. RSC Adv 6:4835–4842CrossRef
10.
go back to reference Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943 Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943
11.
go back to reference Lijuan K, Ruiyi L, Yongqiang Y, Zaijun L (2016) Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder. RSC Adv 6:76344–76354CrossRef Lijuan K, Ruiyi L, Yongqiang Y, Zaijun L (2016) Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder. RSC Adv 6:76344–76354CrossRef
12.
go back to reference Tang H, Xia XH, Zhang YJ, Tong YY, Wang XL, Gu CD, Tu JP (2015) Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries. Electrochim Acta 180:1068–1074CrossRef Tang H, Xia XH, Zhang YJ, Tong YY, Wang XL, Gu CD, Tu JP (2015) Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries. Electrochim Acta 180:1068–1074CrossRef
13.
go back to reference Tang H, J-p Tu, X-y Liu, Y-j Zhang, Huang S, W-z Li, Wang X-l, Gu C-d (2014) Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J Mater Chem A 2:5834–5840CrossRef Tang H, J-p Tu, X-y Liu, Y-j Zhang, Huang S, W-z Li, Wang X-l, Gu C-d (2014) Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J Mater Chem A 2:5834–5840CrossRef
14.
go back to reference Zhang YQ, Xia XH, Wang XL, Mai YJ, Shi SJ, Tang YY, Li L, Tu JP (2012) Silicon/graphene-sheet hybrid film as anode for lithium ion batteries. Electrochem Commun 23:17–20CrossRef Zhang YQ, Xia XH, Wang XL, Mai YJ, Shi SJ, Tang YY, Li L, Tu JP (2012) Silicon/graphene-sheet hybrid film as anode for lithium ion batteries. Electrochem Commun 23:17–20CrossRef
15.
go back to reference Zhou J, Lan Y, Zhang K, Xia G, Du J, Zhu Y, Qian Y (2016) In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. Nanoscale 8:4903–4907CrossRef Zhou J, Lan Y, Zhang K, Xia G, Du J, Zhu Y, Qian Y (2016) In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries. Nanoscale 8:4903–4907CrossRef
16.
go back to reference Ren W, Wang Y, Zhang Z, Tan Q, Zhong Z, Su F (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4:552–560CrossRef Ren W, Wang Y, Zhang Z, Tan Q, Zhong Z, Su F (2016) Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener? J Mater Chem A 4:552–560CrossRef
17.
go back to reference Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRef
18.
go back to reference Wu J, Qin X, Miao C, He Y-B, Liang G, Zhou D, Liu M, Han C, Li B, Kang F (2016) A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98:582–591CrossRef Wu J, Qin X, Miao C, He Y-B, Liang G, Zhou D, Liu M, Han C, Li B, Kang F (2016) A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 98:582–591CrossRef
19.
go back to reference Wu LL, Yang J, Zhou XY, Zhang MF, Ren YP, Nie Y (2016) Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. J Mater Chem A 4:11381–11387CrossRef Wu LL, Yang J, Zhou XY, Zhang MF, Ren YP, Nie Y (2016) Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. J Mater Chem A 4:11381–11387CrossRef
20.
go back to reference Lu Z, Liu N, Lee H-W, Zhao J, Li W, Li Y, Cui Y (2015) Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9:2540–2547. doi:10.1021/nn505410q CrossRef Lu Z, Liu N, Lee H-W, Zhao J, Li W, Li Y, Cui Y (2015) Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9:2540–2547. doi:10.​1021/​nn505410q CrossRef
21.
go back to reference Wang JJ, Xu TT, Huang X, Li H, Ma TL (2016) Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv 6:87778–87790CrossRef Wang JJ, Xu TT, Huang X, Li H, Ma TL (2016) Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv 6:87778–87790CrossRef
22.
go back to reference Shi Y, Zhang J, Pan L, Shi Y, Yu G (2016) Energy gels: a bio-inspired material platform for advanced energy applications. Nano Today 11:738–762CrossRef Shi Y, Zhang J, Pan L, Shi Y, Yu G (2016) Energy gels: a bio-inspired material platform for advanced energy applications. Nano Today 11:738–762CrossRef
23.
go back to reference Shi Y, Zhang J, Bruck AM, Zhang Y, Li J, Stach EA, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu G (2017) A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv Mater. doi:10.1002/adma.201603922 Shi Y, Zhang J, Bruck AM, Zhang Y, Li J, Stach EA, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu G (2017) A tunable 3D nanostructured conductive gel framework electrode for high-performance lithium ion batteries. Adv Mater. doi:10.​1002/​adma.​201603922
24.
go back to reference Shi Y, Yu G (2016) Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem Mater 28:2466–2477CrossRef Shi Y, Yu G (2016) Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem Mater 28:2466–2477CrossRef
25.
go back to reference Shi L, Wang WK, Wang AB, Yuan KG, Jin ZQ, Yang YS (2015) Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J Mater Chem A 3:18190–18197CrossRef Shi L, Wang WK, Wang AB, Yuan KG, Jin ZQ, Yang YS (2015) Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. J Mater Chem A 3:18190–18197CrossRef
26.
go back to reference Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRef
27.
go back to reference Chaibi S, Benachour D, Merbah M, Cagiao ME, Calleja FJB (2015) The role of crosslinking on the physical properties of gelatin based films. Colloid Polym Sci 293:2741–2752CrossRef Chaibi S, Benachour D, Merbah M, Cagiao ME, Calleja FJB (2015) The role of crosslinking on the physical properties of gelatin based films. Colloid Polym Sci 293:2741–2752CrossRef
28.
go back to reference Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH (2014) Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 24:5904–5910CrossRef Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH (2014) Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 24:5904–5910CrossRef
29.
go back to reference Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 28:5834–5844CrossRef Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 28:5834–5844CrossRef
30.
go back to reference Zhou ZW, Liu YT, Xie XM, Ye XY (2016) Constructing novel Si@SnO2 core–shell heterostructures by Facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl Mater Interfaces 8:7092–7100CrossRef Zhou ZW, Liu YT, Xie XM, Ye XY (2016) Constructing novel Si@SnO2 core–shell heterostructures by Facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage. ACS Appl Mater Interfaces 8:7092–7100CrossRef
31.
go back to reference Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X, Lu X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5:2967–2973CrossRef Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X, Lu X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5:2967–2973CrossRef
32.
go back to reference Tao HC, Huang MA, Fan LZ, Qu XH (2013) Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries. Electrochim Acta 89:394–399CrossRef Tao HC, Huang MA, Fan LZ, Qu XH (2013) Effect of nitrogen on the electrochemical performance of core–shell structured Si/C nanocomposites as anode materials for Li-ion batteries. Electrochim Acta 89:394–399CrossRef
33.
go back to reference Gu J, Zeng Y, Feng X, Wu X, Zeng C, Li M (2016) Synthesis of nanosilicon@nonstoichiometric silicon oxide from bulk silicon dioxide and its lithium storage properties. J Alloys Compd 662:185–192CrossRef Gu J, Zeng Y, Feng X, Wu X, Zeng C, Li M (2016) Synthesis of nanosilicon@nonstoichiometric silicon oxide from bulk silicon dioxide and its lithium storage properties. J Alloys Compd 662:185–192CrossRef
34.
go back to reference Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z, Liu X (2014) Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. J Alloys Compd 588:206–211CrossRef Zhang M, Hou X, Wang J, Li M, Hu S, Shao Z, Liu X (2014) Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. J Alloys Compd 588:206–211CrossRef
35.
go back to reference Su L, Zhou Z, Ren M (2010) Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun 46:2590–2592CrossRef Su L, Zhou Z, Ren M (2010) Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem Commun 46:2590–2592CrossRef
36.
go back to reference Tao HC, Yang XL, Zhang LL, Ni SB (2014) Double-walled core–shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 20:1547–1552CrossRef Tao HC, Yang XL, Zhang LL, Ni SB (2014) Double-walled core–shell structured Si@SiO2@C nanocomposite as anode for lithium-ion batteries. Ionics 20:1547–1552CrossRef
37.
go back to reference Wang J, Yu Y, Gu L, Wang C, Tang K, Maier J (2013) Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites. Nanoscale 5:2647–2650CrossRef Wang J, Yu Y, Gu L, Wang C, Tang K, Maier J (2013) Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites. Nanoscale 5:2647–2650CrossRef
38.
go back to reference Marinaro M, Weinberger M, Wohlfahrt-Mehrens M (2016) Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochim Acta 206:99–107CrossRef Marinaro M, Weinberger M, Wohlfahrt-Mehrens M (2016) Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochim Acta 206:99–107CrossRef
39.
go back to reference Zhao J, Lu Z, Liu N, Lee HW, McDowell MT, Cui Y (2014) Dry-air-stable lithium silicide-lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat Commun 5:5088CrossRef Zhao J, Lu Z, Liu N, Lee HW, McDowell MT, Cui Y (2014) Dry-air-stable lithium silicide-lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat Commun 5:5088CrossRef
40.
go back to reference Pang CL, Song HW, Li N, Wang CX (2015) A strategy for suitable mass production of a hollow Si@C nanostructured anode for lithium ion batteries. RSC Adv 5:6782–6789CrossRef Pang CL, Song HW, Li N, Wang CX (2015) A strategy for suitable mass production of a hollow Si@C nanostructured anode for lithium ion batteries. RSC Adv 5:6782–6789CrossRef
41.
go back to reference Shao D, Tang DP, Mai YJ, Zhang LZ (2013) Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A 1:15068–15075CrossRef Shao D, Tang DP, Mai YJ, Zhang LZ (2013) Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A 1:15068–15075CrossRef
Metadata
Title
A three-dimensional network structure Si/C anode for Li-ion batteries
Authors
Ying Jiang
Shi Chen
Daobin Mu
Borong Wu
Qi Liu
Zhikun Zhao
Feng Wu
Publication date
05-06-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1253-9

Other articles of this Issue 18/2017

Journal of Materials Science 18/2017 Go to the issue

Premium Partners