Skip to main content
Top
Published in: Electrical Engineering 5/2023

23-05-2023 | Original Paper

A two-stage strategy for generator rotor angle stability prediction using the adaptive neuro-fuzzy inference system

Authors: Shiva Amini, Sasan Ghasemi, Iman Azadimoshfegh, Jamal Moshtagh, Pierluigi Siano

Published in: Electrical Engineering | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Generator rotor angle oscillations can be caused by sudden changes in its mechanical power input or its electrical power output. When dampening or synchronizing torque is inadequate, rotor angle instability occurs, resulting in an increase in rotor angle, loss of synchronism, or oscillatory swings of the rotor angle with increasing amplitude. To this end, in this work, we offer a novel two-stage approach for predicting rotor angle stability following a large disturbance. The process begins with the creation of a database of dynamic simulation scenarios. This collection contains a wide set of stable and unstable rotor angle trajectories derived from different fault simulations. Then, the fuzzy c-means (FCM) clustering algorithm is utilized to put the sampled data of rotor angles with the highest degree of similarity in the same cluster. Angle sets generated by FCM are used to train the adaptive neuro-fuzzy inference system (ANFIS). Finally, the trained ANFIS is used to predict the future rotor angle stability situation of generators. In addition, a stability index is suggested in this article, which will assist ANFIS in more accurately predicting the stability condition. The efficiency of the proposed method is tested on the IEEE 39-bus system. The obtained results from simulations confirm that the proposed strategy can correctly predict the rotor angle instability or stability situation of generators in a few cycles after fault clearance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Das S, Panigrahi BK (2019) Prediction and control of transient stability using system integrity protection schemes. IET Gener Transm Distrib 13(8):1247–1254CrossRef Das S, Panigrahi BK (2019) Prediction and control of transient stability using system integrity protection schemes. IET Gener Transm Distrib 13(8):1247–1254CrossRef
2.
go back to reference Tziouvaras DA, Hou D (2004) Out-of-step protection fundamentals and advancements. In: 57th Annual conference for protective relay engineers, 2004, College Station, TX, USA. IEEE, pp 282–307 Tziouvaras DA, Hou D (2004) Out-of-step protection fundamentals and advancements. In: 57th Annual conference for protective relay engineers, 2004, College Station, TX, USA. IEEE, pp 282–307
3.
go back to reference Amjady N, Majedi SF (2007) Transient stability prediction by a hybrid intelligent system. IEEE Trans Power Syst 22(3):1275–1283CrossRef Amjady N, Majedi SF (2007) Transient stability prediction by a hybrid intelligent system. IEEE Trans Power Syst 22(3):1275–1283CrossRef
4.
go back to reference Liu C-W, Thorp JS (2000) New methods for computing power system dynamic response for real-time transient stability prediction. IEEE Trans Circuits Syst I Fundam Theory Appl 47(3):324–337CrossRef Liu C-W, Thorp JS (2000) New methods for computing power system dynamic response for real-time transient stability prediction. IEEE Trans Circuits Syst I Fundam Theory Appl 47(3):324–337CrossRef
5.
go back to reference Hashiesh F, Mostafa HE, Khatib A-R, Helal I, Mansour MM (2012) An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities. IEEE Trans Smart Grid 3(2):645–652CrossRef Hashiesh F, Mostafa HE, Khatib A-R, Helal I, Mansour MM (2012) An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities. IEEE Trans Smart Grid 3(2):645–652CrossRef
6.
go back to reference Zhang C, Li Y, Yu Z, Tian F (2016) A weighted random forest approach to improve predictive performance for power system transient stability assessment. In: 2016 IEEE PES Asia-Pacific power and energy engineering conference (APPEEC). IEEE, pp 1259–1263 Zhang C, Li Y, Yu Z, Tian F (2016) A weighted random forest approach to improve predictive performance for power system transient stability assessment. In: 2016 IEEE PES Asia-Pacific power and energy engineering conference (APPEEC). IEEE, pp 1259–1263
7.
go back to reference Li Y, Yang Z (2017) Application of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU data. IEEE Access 5:23092–23101CrossRef Li Y, Yang Z (2017) Application of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU data. IEEE Access 5:23092–23101CrossRef
8.
go back to reference James J, Lam AY, Hill DJ, Li VO (2017) Delay aware intelligent transient stability assessment system. IEEE Access 5:17230–17239CrossRef James J, Lam AY, Hill DJ, Li VO (2017) Delay aware intelligent transient stability assessment system. IEEE Access 5:17230–17239CrossRef
11.
go back to reference Dietrich K, Latorre JM, Olmos L, Ramos A (2011) Demand response in an isolated system with high wind integration. IEEE Trans Power Syst 27(1):20–29CrossRef Dietrich K, Latorre JM, Olmos L, Ramos A (2011) Demand response in an isolated system with high wind integration. IEEE Trans Power Syst 27(1):20–29CrossRef
12.
go back to reference Anzai Y (2012) Pattern recognition and machine learning. Elsevier, AmsterdamMATH Anzai Y (2012) Pattern recognition and machine learning. Elsevier, AmsterdamMATH
13.
go back to reference Alpaydin E (2020) Introduction to machine learning. MIT press, CambridgeMATH Alpaydin E (2020) Introduction to machine learning. MIT press, CambridgeMATH
14.
go back to reference Sobbouhi AR, Vahedi A (2021) Transient stability prediction of power system; a review on methods, classification and considerations. Electr Power Syst Res 190:106853CrossRef Sobbouhi AR, Vahedi A (2021) Transient stability prediction of power system; a review on methods, classification and considerations. Electr Power Syst Res 190:106853CrossRef
15.
go back to reference Gupta A, Gurrala G, Sastry P (2018) An online power system stability monitoring system using convolutional neural networks. IEEE Trans Power Syst 34(2):864–872CrossRef Gupta A, Gurrala G, Sastry P (2018) An online power system stability monitoring system using convolutional neural networks. IEEE Trans Power Syst 34(2):864–872CrossRef
16.
go back to reference Zhuo Z, Du E, Zhang N, Kang C, Xia Q, Wang Z (2019) Incorporating massive scenarios in transmission expansion planning with high renewable energy penetration. IEEE Trans Power Syst 35(2):1061–1074CrossRef Zhuo Z, Du E, Zhang N, Kang C, Xia Q, Wang Z (2019) Incorporating massive scenarios in transmission expansion planning with high renewable energy penetration. IEEE Trans Power Syst 35(2):1061–1074CrossRef
17.
go back to reference Sobbouhi AR, Vahedi A (2021) Transient stability improvement based on out-of-step prediction. Electr Power Syst Res 194:107108CrossRef Sobbouhi AR, Vahedi A (2021) Transient stability improvement based on out-of-step prediction. Electr Power Syst Res 194:107108CrossRef
18.
go back to reference Huang D, Yang X, Chen S, Meng T (2018) Wide-area measurement system-based model-free approach of post-fault rotor angle trajectory prediction for on-line transient instability detection. IET Gener Transm Distrib 12(10):2425–2435CrossRef Huang D, Yang X, Chen S, Meng T (2018) Wide-area measurement system-based model-free approach of post-fault rotor angle trajectory prediction for on-line transient instability detection. IET Gener Transm Distrib 12(10):2425–2435CrossRef
19.
go back to reference Gurusinghe DR, Rajapakse AD (2015) Post-disturbance transient stability status prediction using synchrophasor measurements. IEEE Trans Power Syst 31(5):3656–3664CrossRef Gurusinghe DR, Rajapakse AD (2015) Post-disturbance transient stability status prediction using synchrophasor measurements. IEEE Trans Power Syst 31(5):3656–3664CrossRef
20.
go back to reference Zhou Y, Wu J, Yu Z, Ji L, Hao L (2016) A hierarchical method for transient stability prediction of power systems using the confidence of a SVM-based ensemble classifier. Energies 9(10):778CrossRef Zhou Y, Wu J, Yu Z, Ji L, Hao L (2016) A hierarchical method for transient stability prediction of power systems using the confidence of a SVM-based ensemble classifier. Energies 9(10):778CrossRef
21.
go back to reference Zhu L, Hill DJ, Lu C (2019) Hierarchical deep learning machine for power system online transient stability prediction. IEEE Trans Power Syst 35(3):2399–2411CrossRef Zhu L, Hill DJ, Lu C (2019) Hierarchical deep learning machine for power system online transient stability prediction. IEEE Trans Power Syst 35(3):2399–2411CrossRef
22.
go back to reference Geeganage J, Annakkage U, Weekes T, Archer BA (2014) Application of energy-based power system features for dynamic security assessment. IEEE Trans Power Syst 30(4):1957–1965CrossRef Geeganage J, Annakkage U, Weekes T, Archer BA (2014) Application of energy-based power system features for dynamic security assessment. IEEE Trans Power Syst 30(4):1957–1965CrossRef
23.
go back to reference Tang Y, Li F, Wang Q, Xu Y (2018) Hybrid method for power system transient stability prediction based on two-stage computing resources. IET Gener Transm Distrib 12(8):1697–1703CrossRef Tang Y, Li F, Wang Q, Xu Y (2018) Hybrid method for power system transient stability prediction based on two-stage computing resources. IET Gener Transm Distrib 12(8):1697–1703CrossRef
24.
go back to reference Hosseini H, Naderi S, Afsharnia S (2019) New approach to transient stability prediction of power systems in wide area measurement systems based on multiple-criteria decision making theory. IET Gener Transm Distrib 13(21):4960–4967CrossRef Hosseini H, Naderi S, Afsharnia S (2019) New approach to transient stability prediction of power systems in wide area measurement systems based on multiple-criteria decision making theory. IET Gener Transm Distrib 13(21):4960–4967CrossRef
25.
go back to reference Sharifian A, Sharifian S (2015) A new power system transient stability assessment method based on Type-2 fuzzy neural network estimation. Int J Electr Power Energy Syst 64:71–87CrossRef Sharifian A, Sharifian S (2015) A new power system transient stability assessment method based on Type-2 fuzzy neural network estimation. Int J Electr Power Energy Syst 64:71–87CrossRef
26.
go back to reference Yan R, Geng G, Jiang Q, Li Y (2019) Fast transient stability batch assessment using cascaded convolutional neural networks. IEEE Trans Power Syst 34(4):2802–2813CrossRef Yan R, Geng G, Jiang Q, Li Y (2019) Fast transient stability batch assessment using cascaded convolutional neural networks. IEEE Trans Power Syst 34(4):2802–2813CrossRef
27.
go back to reference Arefi M, Chowdhury B (2017) Post-fault transient stability status prediction using Grey Wolf and Particle Swarm Optimization. In: SoutheastCon 2017, Charlotte, NC, USA. IEEE, pp 1–8 Arefi M, Chowdhury B (2017) Post-fault transient stability status prediction using Grey Wolf and Particle Swarm Optimization. In: SoutheastCon 2017, Charlotte, NC, USA. IEEE, pp 1–8
28.
go back to reference Frimpong EA, Okyere PY, Asumadu J (2017) Prediction of transient stability status using Walsh-Hadamard transform and support vector machine. In: 2017 IEEE PES PowerAfrica, Accra, Ghana. IEEE, pp 301–306 Frimpong EA, Okyere PY, Asumadu J (2017) Prediction of transient stability status using Walsh-Hadamard transform and support vector machine. In: 2017 IEEE PES PowerAfrica, Accra, Ghana. IEEE, pp 301–306
29.
go back to reference Abedini M, Davarpanah M, Sanaye-Pasand M, Hashemi SM, Iravani R (2017) Generator out-of-step prediction based on faster-than-real-time analysis: concepts and applications. IEEE Trans Power Syst 33(4):4563–4573CrossRef Abedini M, Davarpanah M, Sanaye-Pasand M, Hashemi SM, Iravani R (2017) Generator out-of-step prediction based on faster-than-real-time analysis: concepts and applications. IEEE Trans Power Syst 33(4):4563–4573CrossRef
30.
go back to reference Mazhari SM, Safari N, Chung C, Kamwa I (2018) A hybrid fault cluster and thévenin equivalent based framework for rotor angle stability prediction. IEEE Trans Power Syst 33(5):5594–5603CrossRef Mazhari SM, Safari N, Chung C, Kamwa I (2018) A hybrid fault cluster and thévenin equivalent based framework for rotor angle stability prediction. IEEE Trans Power Syst 33(5):5594–5603CrossRef
31.
go back to reference Rajapakse AD, Gomez F, Nanayakkara K, Crossley PA, Terzija VV (2009) Rotor angle instability prediction using post-disturbance voltage trajectories. IEEE Trans Power Syst 25(2):947–956CrossRef Rajapakse AD, Gomez F, Nanayakkara K, Crossley PA, Terzija VV (2009) Rotor angle instability prediction using post-disturbance voltage trajectories. IEEE Trans Power Syst 25(2):947–956CrossRef
33.
go back to reference Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874CrossRefMATH Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874CrossRefMATH
34.
go back to reference Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168CrossRef Abdulshahed AM, Longstaff AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168CrossRef
35.
go back to reference Kar S, Das S, Ghosh PK (2014) Applications of neuro fuzzy systems: A brief review and future outline. Appl Soft Comput 15:243–259CrossRef Kar S, Das S, Ghosh PK (2014) Applications of neuro fuzzy systems: A brief review and future outline. Appl Soft Comput 15:243–259CrossRef
36.
go back to reference Karahoca A, Karahoca D (2011) GSM churn management by using fuzzy c-means clustering and adaptive neuro fuzzy inference system. Expert Syst Appl 38(3):1814–1822CrossRef Karahoca A, Karahoca D (2011) GSM churn management by using fuzzy c-means clustering and adaptive neuro fuzzy inference system. Expert Syst Appl 38(3):1814–1822CrossRef
37.
go back to reference Pai M (2012) Energy function analysis for power system stability. Springer Science & Business Media, Berlin Pai M (2012) Energy function analysis for power system stability. Springer Science & Business Media, Berlin
38.
go back to reference Milano F, Vanfretti L, Morataya JC (2008) An open source power system virtual laboratory: the PSAT case and experience. IEEE Trans Educ 51(1):17–23CrossRef Milano F, Vanfretti L, Morataya JC (2008) An open source power system virtual laboratory: the PSAT case and experience. IEEE Trans Educ 51(1):17–23CrossRef
39.
go back to reference Chandra A, Pradhan AK (2020) Model-free angle stability assessment using wide area measurements. Int J Electr Power Energy Syst 120:105972CrossRef Chandra A, Pradhan AK (2020) Model-free angle stability assessment using wide area measurements. Int J Electr Power Energy Syst 120:105972CrossRef
Metadata
Title
A two-stage strategy for generator rotor angle stability prediction using the adaptive neuro-fuzzy inference system
Authors
Shiva Amini
Sasan Ghasemi
Iman Azadimoshfegh
Jamal Moshtagh
Pierluigi Siano
Publication date
23-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 5/2023
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-023-01827-1

Other articles of this Issue 5/2023

Electrical Engineering 5/2023 Go to the issue