Skip to main content
Top
Published in: Neural Computing and Applications 5/2021

17-06-2020 | Original Article

A two-step combined algorithm based on NARX neural network and the subsequent prediction of the residues improves prediction accuracy of the greenhouse gases concentrations

Authors: Alexander Buevich, Alexander Sergeev, Andrey Shichkin, Elena Baglaeva

Published in: Neural Computing and Applications | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper compares the most applicable models for the forecasting of time series. Models based on artificial neural networks nonlinear autoregressive neural network with external input (NARX), Elman’s neural network, and vector autoregression model were implemented. A special algorithm based on the analysis and prediction of the model residuals, which significantly improves the accuracy of the forecast, was proposed. For the prediction, we used the data of the main greenhouse gases methane (CH4) and water vapor (H2O) concentrations measured in summer 2016 in the surface layer of the atmospheric air on the Arctic island Belyy, Russia. The time interval of 192 h was chosen. The time interval was characterized by the significant daily variations in the CH4 concentration; the H2O concentrations did not have a pronounced trend. Values corresponding to the first 168 h of the interval were used for ANN training, and then, concentrations were predicted for the next 24 h. The accuracy of the prediction was determined by the set of errors and indices. The NARX model was more accurate than models based on Elman network and the VAR. The accuracy gain was from 16.5 to 40% for the models, which predicted the CH4 concentration, and from 21 to 58% for the models, which predicted the H2O concentration. The application of the proposed combined approach made it possible to increase the accuracy of the base model from 1.5 to 20% for the CH4 and from 4 to 20% for the H2O (depending on the corresponding errors and indices). The presented Taylor diagram was also showed the advantage of the proposed approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference AMAP (2017) Snow, water, ice and permafrost. Summary for policy-makers. In: Arctic monitoring and assessment programme (AMAP), Oslo Norway, 20 AMAP (2017) Snow, water, ice and permafrost. Summary for policy-makers. In: Arctic monitoring and assessment programme (AMAP), Oslo Norway, 20
2.
go back to reference Nullis C (2016) Provisional WMO statement on the status of the global climate in 2016. World Meteorological Organization Nullis C (2016) Provisional WMO statement on the status of the global climate in 2016. World Meteorological Organization
3.
go back to reference Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77:85–96CrossRef Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77:85–96CrossRef
4.
go back to reference Borrego C, Monteiro A, Pay MT, Ribeiro I, Miranda AI, Basart S, Baldasano JM (2011) How bias-correction can improve air quality forecasts over Portugal. Atmos Environ 37:6629–6641CrossRef Borrego C, Monteiro A, Pay MT, Ribeiro I, Miranda AI, Basart S, Baldasano JM (2011) How bias-correction can improve air quality forecasts over Portugal. Atmos Environ 37:6629–6641CrossRef
5.
go back to reference Chu N, Kadane JB, Davidson CI (2010) Using statistical regressions to identify factors influencing PM2.5 concentrations: the Pittsburgh supersite as a case study. Aerosol Sci Technol 44:766–774CrossRef Chu N, Kadane JB, Davidson CI (2010) Using statistical regressions to identify factors influencing PM2.5 concentrations: the Pittsburgh supersite as a case study. Aerosol Sci Technol 44:766–774CrossRef
6.
go back to reference Cobourn WG (2010) An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos Environ 44:3015–3023CrossRef Cobourn WG (2010) An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmos Environ 44:3015–3023CrossRef
7.
9.
go back to reference Zhang Y (2019) Dynamic effect analysis of meteorological conditions on air pollution: a case study from Beijing. Sci Total Environ 684:178–185CrossRef Zhang Y (2019) Dynamic effect analysis of meteorological conditions on air pollution: a case study from Beijing. Sci Total Environ 684:178–185CrossRef
11.
go back to reference Lin B, Xu B (2018) Growth of industrial CO2 emissions in Shanghai city: evidence from a dynamic vector autoregression analysis. Energy 151:167–177CrossRef Lin B, Xu B (2018) Growth of industrial CO2 emissions in Shanghai city: evidence from a dynamic vector autoregression analysis. Energy 151:167–177CrossRef
12.
13.
go back to reference Fernando HJS, Mammarella MC, Grandoni C, Fedele P, Di Marco R, Dimitrova R, Hyde P (2012) Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut 163:62–67CrossRef Fernando HJS, Mammarella MC, Grandoni C, Fedele P, Di Marco R, Dimitrova R, Hyde P (2012) Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut 163:62–67CrossRef
14.
go back to reference Genc DD, Yesilyurt C, Tuncel G (2010) Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ Monit Assess 166:11–27CrossRef Genc DD, Yesilyurt C, Tuncel G (2010) Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ Monit Assess 166:11–27CrossRef
15.
go back to reference Russo A, Raischel F, Lind P (2013) Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ 79:822–830CrossRef Russo A, Raischel F, Lind P (2013) Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ 79:822–830CrossRef
16.
go back to reference Zhang G (2003) Time series forecasting using a combined ARIMA and neural network model. Neurocomputing 50:159–175CrossRef Zhang G (2003) Time series forecasting using a combined ARIMA and neural network model. Neurocomputing 50:159–175CrossRef
17.
go back to reference Zhou Q, Jiang H, Wang J, Zhou J (2014) A combined model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci Total Environ 496:264–274CrossRef Zhou Q, Jiang H, Wang J, Zhou J (2014) A combined model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci Total Environ 496:264–274CrossRef
18.
go back to reference Wenquan X et al (2019) Deep belief network-based AR model for nonlinear time series forecasting. Appl Soft Comput 77:605–621CrossRef Wenquan X et al (2019) Deep belief network-based AR model for nonlinear time series forecasting. Appl Soft Comput 77:605–621CrossRef
19.
go back to reference Chatfield C (2003) The analysis of time series: an introduction, vol 352, 6th edn. Chapman and Hall/CRC, LondonCrossRef Chatfield C (2003) The analysis of time series: an introduction, vol 352, 6th edn. Chapman and Hall/CRC, LondonCrossRef
20.
go back to reference Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using combined Elman–NARX neural networks. Neurocomputing 73:2540–2553CrossRef Ardalani-Farsa M, Zolfaghari S (2010) Chaotic time series prediction with residual analysis method using combined Elman–NARX neural networks. Neurocomputing 73:2540–2553CrossRef
21.
go back to reference Erdil A, Arcaklioglu E (2013) The prediction of meteorological variables using artificial neural network. Neural Comput Appl 22:1677–1683CrossRef Erdil A, Arcaklioglu E (2013) The prediction of meteorological variables using artificial neural network. Neural Comput Appl 22:1677–1683CrossRef
22.
go back to reference Menezes JM Jr, Barreto GA (2008) Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 71:3335–3343CrossRef Menezes JM Jr, Barreto GA (2008) Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 71:3335–3343CrossRef
23.
go back to reference Pisoni E, Farina M, Carnevale C, Piroddi L (2009) Forecasting peak air pollution levels using NARX models. Eng Appl Artif Intell 22:593–602CrossRef Pisoni E, Farina M, Carnevale C, Piroddi L (2009) Forecasting peak air pollution levels using NARX models. Eng Appl Artif Intell 22:593–602CrossRef
24.
go back to reference Zemouri R, Gouriveau R, Zerhouni N (2010) Defining and applying prediction performance metrics on a recurrent NARX time series model. Neurocomputing 73:2506–2521CrossRef Zemouri R, Gouriveau R, Zerhouni N (2010) Defining and applying prediction performance metrics on a recurrent NARX time series model. Neurocomputing 73:2506–2521CrossRef
25.
go back to reference Sergeev A, Shichkin A, Buevich A (2018) Time series forecasting of methane concentrations in the surface layer of atmospheric air in Arctic region. In: Proceedings of the 44th international conference on applications of mathematics in engineering and economics AMEE 2018, American Institute of Physics Inc., vol 2048, p 060005. https://doi.org/10.1063/1.5082120 Sergeev A, Shichkin A, Buevich A (2018) Time series forecasting of methane concentrations in the surface layer of atmospheric air in Arctic region. In: Proceedings of the 44th international conference on applications of mathematics in engineering and economics AMEE 2018, American Institute of Physics Inc., vol 2048, p 060005. https://​doi.​org/​10.​1063/​1.​5082120
27.
go back to reference Dai F, Zhoua O, Lva Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter concentration integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Ind 45:184–194CrossRef Dai F, Zhoua O, Lva Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter concentration integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Ind 45:184–194CrossRef
28.
go back to reference Sergeev AP, Buevich AG, Baglaeva EM, Shichkin AV (2019) Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA 174:425–435CrossRef Sergeev AP, Buevich AG, Baglaeva EM, Shichkin AV (2019) Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. CATENA 174:425–435CrossRef
29.
go back to reference Tarasov DA, Buevich AG, Sergeev AP, Shichkin AV (2018) High variation topsoil pollution forecasting in the Russian Subarctic: using artificial neural networks combined with residual kriging. Appl Geochem 88(B):188–197CrossRef Tarasov DA, Buevich AG, Sergeev AP, Shichkin AV (2018) High variation topsoil pollution forecasting in the Russian Subarctic: using artificial neural networks combined with residual kriging. Appl Geochem 88(B):188–197CrossRef
30.
go back to reference Shepherd AJ (1997) Second-order methods for neural networks: fast and reliable training methods for multi-layer perceptrons, vol 145. Springer, BerlinCrossRef Shepherd AJ (1997) Second-order methods for neural networks: fast and reliable training methods for multi-layer perceptrons, vol 145. Springer, BerlinCrossRef
31.
go back to reference Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRef Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRef
32.
34.
go back to reference Sabolova R, Seckarova V, Dusek J, Stehlik M (2015) Entropy based statistical inference for methane emissions released from wetland. Chemometr Intell Lab Syst 141:125–133CrossRef Sabolova R, Seckarova V, Dusek J, Stehlik M (2015) Entropy based statistical inference for methane emissions released from wetland. Chemometr Intell Lab Syst 141:125–133CrossRef
35.
go back to reference Jordanova P, Dusek J, Stehlik M (2013) Microergodicity effects on ebullition of methane modelled by Mixed Poisson process with Pareto mixing variable. Chemometr Intell Lab Syst 128:124–134CrossRef Jordanova P, Dusek J, Stehlik M (2013) Microergodicity effects on ebullition of methane modelled by Mixed Poisson process with Pareto mixing variable. Chemometr Intell Lab Syst 128:124–134CrossRef
Metadata
Title
A two-step combined algorithm based on NARX neural network and the subsequent prediction of the residues improves prediction accuracy of the greenhouse gases concentrations
Authors
Alexander Buevich
Alexander Sergeev
Andrey Shichkin
Elena Baglaeva
Publication date
17-06-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04995-4

Other articles of this Issue 5/2021

Neural Computing and Applications 5/2021 Go to the issue

Premium Partner