Skip to main content
Top
Published in: Numerical Algorithms 1/2024

16-10-2023 | Original Paper

A unified approach to Krylov subspace methods for solving linear systems

Authors: F. Bouyghf, A. Messaoudi, H. Sadok

Published in: Numerical Algorithms | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present a comprehensive framework for studying Krylov subspace methods used to solve the linear system \(Ax=f\). These methods aim to achieve convergence within a specified number of iterations, denoted by m, given a particular initial estimate vector \(x_0\) and its corresponding residual \(r_0=f-Ax_0\). Our analysis focuses on the minimal polynomial \({\varPhi }_m\) of degree m of A for the vector \(r_0\). We establish that these methods encompass Petrov-Galerkin methods and minimal seminorm methods as special cases. Additionally, we demonstrate that minimal seminorm methods satisfy implicit Petrov-Galerkin conditions. We provide a general formulation for the iterates based on generalized inverses. The choice of a specific left inverse and the method of constructing the Krylov basis are crucial distinguishing factors among different Krylov subspace methods. We describe and analyze the mathematical properties of these methods, emphasizing their dependency on two matrices. Notably, we prove that CMRH and QMR, as specific instances, also satisfy implicit Petrov-Galerkin orthogonality conditions. Furthermore, we explore techniques to improve the convergence behavior of these methods by carefully selecting vectors in their implementations. Through our investigation, we aim to deepen the understanding of Krylov subspace methods, provide insights into their convergence properties, and identify potential enhancements. We also consider some Krylov subspace methods, which are of product-type methods. In this case, the kth residual \(r_k\) associated with the approximation \(x_k\) of the exact solution is given by \(r_k={\varPsi }_k(A){\varPhi }_k(A)r_0\), and \({\varPsi }_k\) is a polynomial of fixed or variable degree. We will examine particular choices of \({\varPsi }_k\) involving local convergence, smoothing, fixed memory, and cost for each iteration. We will also give an enhancement of some product-type methods such as CGS. To illustrate the performance of the derived algorithms, we provide some numerical examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ben-Israel, A., Greville, T.N.E.: Generalized inverse, theory and application, 2nd edn. Canadian Mathematical Society, Ottawa (2003) Ben-Israel, A., Greville, T.N.E.: Generalized inverse, theory and application, 2nd edn. Canadian Mathematical Society, Ottawa (2003)
2.
go back to reference Bouyghf, F.: An enhancement of the convergence of the BiCGStab method for solving linear systems with single or multiple right-hand sides, submitted to Computational and mathematical methods Bouyghf, F.: An enhancement of the convergence of the BiCGStab method for solving linear systems with single or multiple right-hand sides, submitted to Computational and mathematical methods
3.
go back to reference Bouyghf, F., Messaoudi, A., Sadok, H.: An enhancement of the convergence of IDR method. Electron. Trans. Numer. Anal. 58, 470–485 (2023)MathSciNetCrossRef Bouyghf, F., Messaoudi, A., Sadok, H.: An enhancement of the convergence of IDR method. Electron. Trans. Numer. Anal. 58, 470–485 (2023)MathSciNetCrossRef
4.
go back to reference Brezinski, C., Redivo-Zaglia, M., Sadok, H.: Avoiding breakdown and near breakdown in Lanczos-type algorithms. Numer. Algorithms 1, 199–206 (1991)MathSciNetCrossRef Brezinski, C., Redivo-Zaglia, M., Sadok, H.: Avoiding breakdown and near breakdown in Lanczos-type algorithms. Numer. Algorithms 1, 199–206 (1991)MathSciNetCrossRef
5.
go back to reference Brezinski, C., Redivo-Zaglia, M., Sadok, H.: The matrix and polynomial approaches to Lanczos-type algorithms. Numer. Math. 45, 361–376 (1992) Brezinski, C., Redivo-Zaglia, M., Sadok, H.: The matrix and polynomial approaches to Lanczos-type algorithms. Numer. Math. 45, 361–376 (1992)
6.
go back to reference Brezinski, C., Redivo-Zaglia, M., Sadok, H.: The matrix and polynomial approaches to Lanczos-type algorithms. J. Comput. Appl. Math. 123, 241–260 (2000)MathSciNetCrossRef Brezinski, C., Redivo-Zaglia, M., Sadok, H.: The matrix and polynomial approaches to Lanczos-type algorithms. J. Comput. Appl. Math. 123, 241–260 (2000)MathSciNetCrossRef
7.
go back to reference Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) Numerical analysis, Dundee 1975. Lecture Notes in Mathematics, vol. 506. Springer, Berlin (1976) Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A. (ed.) Numerical analysis, Dundee 1975. Lecture Notes in Mathematics, vol. 506. Springer, Berlin (1976)
8.
go back to reference Freund, R.W., Nachtigal, N.M.: QMR: a quasi minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)MathSciNetCrossRef Freund, R.W., Nachtigal, N.M.: QMR: a quasi minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)MathSciNetCrossRef
9.
go back to reference Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)MathSciNetCrossRef Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)MathSciNetCrossRef
11.
go back to reference Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)MathSciNetCrossRef Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)MathSciNetCrossRef
12.
go back to reference Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspaces methods. Linear Algebra Appl. 268, 131–149 (1998)MathSciNetCrossRef Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspaces methods. Linear Algebra Appl. 268, 131–149 (1998)MathSciNetCrossRef
13.
go back to reference Householder, A.S., Bauer, F.L.: On certain methods for expanding the characteristic polynomial. Numer. Math. 1, 29–37 (1959)MathSciNetCrossRef Householder, A.S., Bauer, F.L.: On certain methods for expanding the characteristic polynomial. Numer. Math. 1, 29–37 (1959)MathSciNetCrossRef
14.
go back to reference Joubert, W.: Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM Matrix Anal. Appl. 13, 926–943 (1992)MathSciNetCrossRef Joubert, W.: Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM Matrix Anal. Appl. 13, 926–943 (1992)MathSciNetCrossRef
15.
go back to reference Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. stand. 49, 33–53 (1952)MathSciNetCrossRef Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. stand. 49, 33–53 (1952)MathSciNetCrossRef
16.
go back to reference Liesen, J., Strakos, Z.: Krylov subspace methods principles and analysis, 1st edn. Oxford University Press, Oxford (2013) Liesen, J., Strakos, Z.: Krylov subspace methods principles and analysis, 1st edn. Oxford University Press, Oxford (2013)
17.
go back to reference Meurant, G., Tabbens, J.D.: Krylov methods for non-symmetric linear systems: from theory to computations. In: Springer Series in Computational Mathematics, vol. 57 (2020) Meurant, G., Tabbens, J.D.: Krylov methods for non-symmetric linear systems: from theory to computations. In: Springer Series in Computational Mathematics, vol. 57 (2020)
18.
go back to reference Nachtigal, N.M.: A look-ahead variant of the Lanczos algorithm and its application to the quasi minimal residual method for nonhermitian linear systems. Ph.D. thesis, Massachusetts Institute of Technology (1991) Nachtigal, N.M.: A look-ahead variant of the Lanczos algorithm and its application to the quasi minimal residual method for nonhermitian linear systems. Ph.D. thesis, Massachusetts Institute of Technology (1991)
19.
go back to reference Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13, 567–593 (1992)MathSciNetCrossRef Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13, 567–593 (1992)MathSciNetCrossRef
20.
go back to reference Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comput. 44(169), 105–124 (1985) Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comput. 44(169), 105–124 (1985)
21.
go back to reference Pozza, S., Pranic, M.S.: The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization. Numer. Algorithms 88(2), 647–678 (2021)MathSciNetCrossRef Pozza, S., Pranic, M.S.: The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization. Numer. Algorithms 88(2), 647–678 (2021)MathSciNetCrossRef
22.
go back to reference Saad, Y.: Iterative methods for sparse linear systems. The PWS Publishing Company, Boston, 1996. 2nd edition, SIAM, Philadelphia (2003) Saad, Y.: Iterative methods for sparse linear systems. The PWS Publishing Company, Boston, 1996. 2nd edition, SIAM, Philadelphia (2003)
23.
go back to reference Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci Stat. Comput. 7, 856–869 (1986)CrossRef Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci Stat. Comput. 7, 856–869 (1986)CrossRef
24.
go back to reference Sadok, H.: Méthods de projection pour les systèmes linéaires et non linéaires. Habilitation thesis, University of Lille (1994) Sadok, H.: Méthods de projection pour les systèmes linéaires et non linéaires. Habilitation thesis, University of Lille (1994)
25.
go back to reference Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20, 303–321 (1999)MathSciNetCrossRef Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20, 303–321 (1999)MathSciNetCrossRef
26.
27.
go back to reference Sonneveld, P.: CGS: a fast Lanczos-type solver for non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)MathSciNetCrossRef Sonneveld, P.: CGS: a fast Lanczos-type solver for non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36–52 (1989)MathSciNetCrossRef
28.
go back to reference Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. Ph.D. thesis, University of California, Berkley (1982) Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. Ph.D. thesis, University of California, Berkley (1982)
29.
go back to reference Van Der Vorst, H.A.: Bi-CGStab: a fast and smoothy converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992)CrossRef Van Der Vorst, H.A.: Bi-CGStab: a fast and smoothy converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992)CrossRef
30.
go back to reference Van der Vorst, H.A.: Iterative Krylov methods for large linear systems. Cambridge University Press, Cambridge (2003)CrossRef Van der Vorst, H.A.: Iterative Krylov methods for large linear systems. Cambridge University Press, Cambridge (2003)CrossRef
31.
go back to reference Wilkinson, J.H.: The algebraic eigenvalue problem. Claredon Press, Oxford, England (1965) Wilkinson, J.H.: The algebraic eigenvalue problem. Claredon Press, Oxford, England (1965)
Metadata
Title
A unified approach to Krylov subspace methods for solving linear systems
Authors
F. Bouyghf
A. Messaoudi
H. Sadok
Publication date
16-10-2023
Publisher
Springer US
Published in
Numerical Algorithms / Issue 1/2024
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-023-01648-0

Other articles of this Issue 1/2024

Numerical Algorithms 1/2024 Go to the issue

Premium Partner