Skip to main content
Top
Published in: Experimental Mechanics 5/2013

01-06-2013

Absolute Nodal Coordinates in Digital Image Correlation

Authors: M. Langerholc, J. Slavič, M. Boltežar

Published in: Experimental Mechanics | Issue 5/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A great deal of progress has been made in recent years in the field of global digital image correlation (DIC), where higher-order, element-based approaches were proposed to improve the interpolation performance and to better capture the displacement fields. In this research, another higher-order, element-based DIC procedure is introduced. Instead of the displacements, the elements’ global nodal positions and nodal position-vector gradients, defined according to the absolute nodal coordinate formulation, are used as the searched parameters of the Newton–Raphson iterative procedure. For the finite elements, the planar isoparametric plates with 24 nodal degrees of freedom are employed to ensure the gradients’ continuity among the elements. As such, the presented procedure imposes no linearization on the strain measure, and therefore indicates a natural consistency with the nonlinear continuum theory. To verify the new procedure and to show its advantages, a real large deformation experiment and several numerical tests on the computer-generated images are studied for the standard, low-order, element-based digital image correlation and the presented procedure. The results show that the proposed procedure proves to be accurate and reliable for describing the rigid-body movement and simple deformations, as well as for determining the continuous finite strain field of a real specimen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Witz J, Hild F, Roux S, Rieunier J (2009) Mechanical properties of crimped mineral wools: identification from digital image correlation. In: IUTAM symposium on mechanical properties of cellular materials, IUTAM Bookseries, vol 12, pp 135–147 Witz J, Hild F, Roux S, Rieunier J (2009) Mechanical properties of crimped mineral wools: identification from digital image correlation. In: IUTAM symposium on mechanical properties of cellular materials, IUTAM Bookseries, vol 12, pp 135–147
2.
go back to reference Zhang J, Cai Y, Ye W, Yu T (2011) On the use of the digital image correlation method for heterogeneous deformation measurement of porous solids. Opt Lasers Eng 49(2):200–209CrossRef Zhang J, Cai Y, Ye W, Yu T (2011) On the use of the digital image correlation method for heterogeneous deformation measurement of porous solids. Opt Lasers Eng 49(2):200–209CrossRef
3.
go back to reference Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F, Lademo O, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48:181–196CrossRef Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F, Lademo O, Eriksson M (2008) A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech 48:181–196CrossRef
4.
go back to reference Hild F, Roux S (2007) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508 Hild F, Roux S (2007) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508
5.
go back to reference Perie J, Leclerc H, Roux S, Hild F (2009) Digital image correlation and biaxial test on composite material for anisotropic damage law identification. Int J Solids Struct 46(11–12):2388–2396MATHCrossRef Perie J, Leclerc H, Roux S, Hild F (2009) Digital image correlation and biaxial test on composite material for anisotropic damage law identification. Int J Solids Struct 46(11–12):2388–2396MATHCrossRef
6.
go back to reference Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062,001CrossRef Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062,001CrossRef
7.
go back to reference Cheng P, Sutton M, Schreier H, McNeill S (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 42:344–352CrossRef Cheng P, Sutton M, Schreier H, McNeill S (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 42:344–352CrossRef
8.
go back to reference Sun Y, Pang J, Wong C, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363CrossRef Sun Y, Pang J, Wong C, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363CrossRef
9.
go back to reference Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin—le chatelier bands. Exp Mech 46:789–803CrossRef Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin—le chatelier bands. Exp Mech 46:789–803CrossRef
10.
go back to reference Elguedj T, Rethore J, Buteri A (2011) Isogeometric analysis for strain field measurements. Comput Methods Appl Mech Eng 200(1–4):40–56CrossRef Elguedj T, Rethore J, Buteri A (2011) Isogeometric analysis for strain field measurements. Comput Methods Appl Mech Eng 200(1–4):40–56CrossRef
11.
go back to reference Ma S, Zhao Z, Wang X (2012) Mesh-based digital image correlation method using higher order isoparametric elements. J Strain Anal Eng Des 47:163–175CrossRef Ma S, Zhao Z, Wang X (2012) Mesh-based digital image correlation method using higher order isoparametric elements. J Strain Anal Eng Des 47:163–175CrossRef
12.
go back to reference Hild F, Roux S, Gras R, Guerrero N, Eugenia M, Flórez-López J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47:495–503CrossRef Hild F, Roux S, Gras R, Guerrero N, Eugenia M, Flórez-López J (2009) Displacement measurement technique for beam kinematics. Opt Lasers Eng 47:495–503CrossRef
13.
go back to reference Rethore J, Elguedj T, Simon P, Coret M (2010) On the use of NURBS functions for displacement derivatives measurement by digital image correlation. Exp Mech 50:1099–1116CrossRef Rethore J, Elguedj T, Simon P, Coret M (2010) On the use of NURBS functions for displacement derivatives measurement by digital image correlation. Exp Mech 50:1099–1116CrossRef
14.
go back to reference Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt 41:6815–6828CrossRef Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt 41:6815–6828CrossRef
15.
go back to reference Shabana A (2008) Computational continuum mechanics. Cambridge University Press Shabana A (2008) Computational continuum mechanics. Cambridge University Press
16.
go back to reference Shabana A (1998) Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn 16:293–306MathSciNetMATHCrossRef Shabana A (1998) Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn 16:293–306MathSciNetMATHCrossRef
17.
go back to reference Shabana A (1997) Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn 1:339–348MathSciNetMATHCrossRef Shabana A (1997) Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst Dyn 1:339–348MathSciNetMATHCrossRef
18.
go back to reference Shabana A, Mikkola A (2003) On the use of the degenerate plate and the absolute nodal co-ordinate formulations in multibody system applications. J Sound Vib 259(2):481–489CrossRef Shabana A, Mikkola A (2003) On the use of the degenerate plate and the absolute nodal co-ordinate formulations in multibody system applications. J Sound Vib 259(2):481–489CrossRef
19.
20.
go back to reference Dufva K, Shabana A (2005) Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc Inst Mech Eng, Proc Part K, J Multi-Body Dyn 219:345–355 Dufva K, Shabana A (2005) Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc Inst Mech Eng, Proc Part K, J Multi-Body Dyn 219:345–355
21.
go back to reference Čepon G, Boltežar M (2009) Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J Sound Vib 319(3–5):1019–1035 Čepon G, Boltežar M (2009) Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J Sound Vib 319(3–5):1019–1035
22.
go back to reference Čepon G, Boltežar M (2009) Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J Sound Vib 324(1–2):283–296 Čepon G, Boltežar M (2009) Introduction of damping into the flexible multibody belt-drive model: a numerical and experimental investigation. J Sound Vib 324(1–2):283–296
23.
go back to reference Dmitrochenko O, Pogorelov D (2003) Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst Dyn 10:17–43MATHCrossRef Dmitrochenko O, Pogorelov D (2003) Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst Dyn 10:17–43MATHCrossRef
24.
go back to reference Sereshk V, Salimi M (2011) Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int J Numer Meth Bio 27(8):1185–1198MathSciNetMATHCrossRef Sereshk V, Salimi M (2011) Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis. Int J Numer Meth Bio 27(8):1185–1198MathSciNetMATHCrossRef
25.
go back to reference Shabana A, Maqueda L (2008) Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody Syst Dyn 20:239–249MathSciNetMATHCrossRef Shabana A, Maqueda L (2008) Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody Syst Dyn 20:239–249MathSciNetMATHCrossRef
26.
go back to reference Guo B, Giraudeau G, Pierron F, Avril S (2008) Viscoelastic material properties’ identification using full field measurements on vibrating plates, p 737565. SPIE Guo B, Giraudeau G, Pierron F, Avril S (2008) Viscoelastic material properties’ identification using full field measurements on vibrating plates, p 737565. SPIE
27.
go back to reference Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRef Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRef
28.
go back to reference Zienkiewicz O, Taylor R (2000) Finite element method, vol 1, 5th edn. The Basis, ElsevierMATH Zienkiewicz O, Taylor R (2000) Finite element method, vol 1, 5th edn. The Basis, ElsevierMATH
29.
go back to reference Bing P, Hui-min X, Bo-qin X, Fu-long D (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 42:1615–1621 CrossRef Bing P, Hui-min X, Bo-qin X, Fu-long D (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 42:1615–1621 CrossRef
30.
go back to reference Vendroux G, Knauss W (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38:86–92CrossRef Vendroux G, Knauss W (1998) Submicron deformation field measurements: Part 2. Improved digital image correlation. Exp Mech 38:86–92CrossRef
31.
go back to reference Zhu Z, Pour B (2011) A nodal position finite element method for plane elastic problems. Finite Elem Anal Des 47(2):73–77MathSciNetCrossRef Zhu Z, Pour B (2011) A nodal position finite element method for plane elastic problems. Finite Elem Anal Des 47(2):73–77MathSciNetCrossRef
32.
go back to reference Gonzales R, Woods R, Eddins S (2009) Digital image processing using Matlab, 2nd edn. Gatesmark Publishing Gonzales R, Woods R, Eddins S (2009) Digital image processing using Matlab, 2nd edn. Gatesmark Publishing
33.
go back to reference Langerholc M, Česnik M, Slavič J, Boltežar M (2012) Experimental validation of a complex, large-scale, rigid-body mechanism. Eng Struct 36:220–227CrossRef Langerholc M, Česnik M, Slavič J, Boltežar M (2012) Experimental validation of a complex, large-scale, rigid-body mechanism. Eng Struct 36:220–227CrossRef
Metadata
Title
Absolute Nodal Coordinates in Digital Image Correlation
Authors
M. Langerholc
J. Slavič
M. Boltežar
Publication date
01-06-2013
Publisher
Springer US
Published in
Experimental Mechanics / Issue 5/2013
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-012-9691-4

Other articles of this Issue 5/2013

Experimental Mechanics 5/2013 Go to the issue

Premium Partners