Skip to main content
Top
Published in: Calcolo 4/2023

01-11-2023

Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential

Authors: Xuanxuan Zhou, Yongyong Cai, Xingdong Tang, Guixiang Xu

Published in: Calcolo | Issue 4/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce two conservative Crank–Nicolson type finite difference schemes and a Chebyshev collocation scheme for the nonlinear Schrödinger equation with a Dirac delta potential in 1D. The key to the proposed methods is to transform the original problem into an interface problem. Different treatments on the interface conditions lead to different discrete schemes and it turns out that a simple discrete approximation of the Dirac potential coincides with one of the conservative finite difference schemes. The optimal \(H^1\) error estimates and the conservative properties of the finite difference schemes are investigated. Both Crank-Nicolson finite difference methods enjoy the second-order convergence rate in time, and the first-order/second-order convergence rates in space, depending on the approximation of the interface condition. Furthermore, the Chebyshev collocation method has been established by the domain-decomposition techniques, and it is numerically verified to be second-order convergent in time and spectrally accurate in space. Numerical examples are provided to support our analysis and study the orbital stability and the motion of the solitary solutions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adami, R., Sacchetti, A.: The transition from diffusion to blow-up for a nonlinear Schrödinger equation in dimension 1. J. Phys. A: Math. Gen. 38, 8379 (2005)CrossRefMATH Adami, R., Sacchetti, A.: The transition from diffusion to blow-up for a nonlinear Schrödinger equation in dimension 1. J. Phys. A: Math. Gen. 38, 8379 (2005)CrossRefMATH
2.
go back to reference Aklan, N.A.B., Umarov, B.: Interaction of solitons with delta potential in the Cubic-Quintic nonlinear Schrödinger equation, 2015 International Conference on Research and Education in Mathematics (ICREM7), Kuala Lumpur, Malaysia, 93-96 (2015) Aklan, N.A.B., Umarov, B.: Interaction of solitons with delta potential in the Cubic-Quintic nonlinear Schrödinger equation, 2015 International Conference on Research and Education in Mathematics (ICREM7), Kuala Lumpur, Malaysia, 93-96 (2015)
3.
go back to reference Akrivis, G.D., Dougalis, V.A., Karakashian, Q.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetCrossRefMATH Akrivis, G.D., Dougalis, V.A., Karakashian, Q.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)MathSciNetCrossRefMATH
5.
go back to reference Bai, J., Li, C., Liu, X.Y.: Weak multi-symplectic reformulation and geometric numerical integration for the nonlinear Schrödinger equations with delta potentials. IMA J. Numer. Anal. 38, 399–429 (2018)MathSciNetCrossRefMATH Bai, J., Li, C., Liu, X.Y.: Weak multi-symplectic reformulation and geometric numerical integration for the nonlinear Schrödinger equations with delta potentials. IMA J. Numer. Anal. 38, 399–429 (2018)MathSciNetCrossRefMATH
6.
go back to reference Bai, J., Wang, L.: EJIIM for the stationary Schrödinger equations with delta potential wells. Appl. Math. Comput. 254, 113–124 (2015)MathSciNetMATH Bai, J., Wang, L.: EJIIM for the stationary Schrödinger equations with delta potential wells. Appl. Math. Comput. 254, 113–124 (2015)MathSciNetMATH
7.
go back to reference Bao, W.Z., Cai, Y.Y.: Mathematical theory and numerical methods for Bose-Einstein Condensation. Kinet. Relat. Models. 6, 1–135 (2013)MathSciNetCrossRefMATH Bao, W.Z., Cai, Y.Y.: Mathematical theory and numerical methods for Bose-Einstein Condensation. Kinet. Relat. Models. 6, 1–135 (2013)MathSciNetCrossRefMATH
8.
go back to reference Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetCrossRefMATH Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetCrossRefMATH
9.
go back to reference Bao, W.Z., Cai, Y.Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82(281), 99–128 (2013)MathSciNetCrossRefMATH Bao, W.Z., Cai, Y.Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82(281), 99–128 (2013)MathSciNetCrossRefMATH
10.
go back to reference Bao, W.Z., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comput. Phys. 187(1), 318–342 (2003)MathSciNetCrossRefMATH Bao, W.Z., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comput. Phys. 187(1), 318–342 (2003)MathSciNetCrossRefMATH
11.
go back to reference Cazenave, T.: Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences., (2003) Cazenave, T.: Semilinear Schrödinger Equations, Courant Institute of Mathematical Sciences., (2003)
12.
go back to reference Chang, Q.S., Xu, L.B.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. Comput. Phys. 4, 191–199 (1986)CrossRefMATH Chang, Q.S., Xu, L.B.: A numerical method for a system of generalized nonlinear Schrödinger equations. J. Comput. Phys. 4, 191–199 (1986)CrossRefMATH
13.
go back to reference Cheng, B., Chen, Y.M., Xu, C.F., et al.: Nonlinear Schrödinger equation with a Dirac delta potential: finite difference method. Commun. Theor. Phys. 72(2), 025001 (2020)MathSciNetCrossRefMATH Cheng, B., Chen, Y.M., Xu, C.F., et al.: Nonlinear Schrödinger equation with a Dirac delta potential: finite difference method. Commun. Theor. Phys. 72(2), 025001 (2020)MathSciNetCrossRefMATH
14.
go back to reference Deift, P., Park, J.: Long time asymptotics for solutions of the NLS equation with a delta potential and even initial data, IMRN., 5505–5624 (2011) Deift, P., Park, J.: Long time asymptotics for solutions of the NLS equation with a delta potential and even initial data, IMRN., 5505–5624 (2011)
15.
go back to reference Desjardins, O., Moureau, V., Pitsch, H.: An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227, 8395–8416 (2008)MathSciNetCrossRefMATH Desjardins, O., Moureau, V., Pitsch, H.: An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227, 8395–8416 (2008)MathSciNetCrossRefMATH
16.
go back to reference Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate. Ric. Sci. 7, 13–52 (1936). ((in Italian))MATH Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate. Ric. Sci. 7, 13–52 (1936). ((in Italian))MATH
17.
go back to reference Fukuizumi, R., Ohta, M., Ozawa, T.: Nonlinear Schrödinger equation with a point defect, Ann.I.H.Poincaré-AN., 25, 837–845 (2008) Fukuizumi, R., Ohta, M., Ozawa, T.: Nonlinear Schrödinger equation with a point defect, Ann.I.H.Poincaré-AN., 25, 837–845 (2008)
18.
go back to reference Goodman, G.H., Holmes, P.H., Weinstein, M‘I.: Strong NLS soliton-defect interactions. Physica D. 192, 215–248 (2004) Goodman, G.H., Holmes, P.H., Weinstein, M‘I.: Strong NLS soliton-defect interactions. Physica D. 192, 215–248 (2004)
19.
go back to reference Hoang, T.T.P., Ju, L.L., Wang, Z.: Nonoverlapping localized exponential time differencing methods for diffusion problems. J. Sci. Comput. 82, 1–27 (2020)MathSciNetCrossRefMATH Hoang, T.T.P., Ju, L.L., Wang, Z.: Nonoverlapping localized exponential time differencing methods for diffusion problems. J. Sci. Comput. 82, 1–27 (2020)MathSciNetCrossRefMATH
20.
21.
go back to reference Houim, R.W., Kuo, K.K.: A ghost fluid method for compressible reacting flows with phase change. J. Comput. Phys. 235, 865–900 (2013)MathSciNetCrossRef Houim, R.W., Kuo, K.K.: A ghost fluid method for compressible reacting flows with phase change. J. Comput. Phys. 235, 865–900 (2013)MathSciNetCrossRef
22.
go back to reference Ikeda, M., Inui, T.: Global dynamics below the standing waves for the focusing semilinear Schrödinger equation with a repulsive Dirac delta potential. Anal. PDE 10, 481–512 (2017)MathSciNetCrossRefMATH Ikeda, M., Inui, T.: Global dynamics below the standing waves for the focusing semilinear Schrödinger equation with a repulsive Dirac delta potential. Anal. PDE 10, 481–512 (2017)MathSciNetCrossRefMATH
23.
go back to reference LeVeque, R.J., Li, Z.L.: The Immersed interface method for elliptic equation with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)MathSciNetCrossRefMATH LeVeque, R.J., Li, Z.L.: The Immersed interface method for elliptic equation with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)MathSciNetCrossRefMATH
24.
go back to reference Le Coz, S., Fukuizumi, R., Fibich, G., Ksherim, B., Sivan, Y.: Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Physica D 237, 1103–1128 (2008)MathSciNetCrossRefMATH Le Coz, S., Fukuizumi, R., Fibich, G., Ksherim, B., Sivan, Y.: Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Physica D 237, 1103–1128 (2008)MathSciNetCrossRefMATH
25.
go back to reference Masaki, S., Murphy, J., Segata, J.: Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential. Analysis & PDE. 13(4), 1099–1128 (2020)MathSciNetCrossRefMATH Masaki, S., Murphy, J., Segata, J.: Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential. Analysis & PDE. 13(4), 1099–1128 (2020)MathSciNetCrossRefMATH
26.
27.
go back to reference Pan, K., He, D., Li, Z.: A high order compact FD framework for elliptic BVPs involving singular sources, interfaces, and irregular domains. J. Sci. Comput. 88, 1–25 (2021)MathSciNetCrossRefMATH Pan, K., He, D., Li, Z.: A high order compact FD framework for elliptic BVPs involving singular sources, interfaces, and irregular domains. J. Sci. Comput. 88, 1–25 (2021)MathSciNetCrossRefMATH
30.
go back to reference Qian, X., Fu, H., Song, S.: Conservative modified Crank-Nicolson and time-splitting wavelet methods for modeling Bose-Einstein condensates in delta potentials. Appl. Math. Comput. 307, 1–16 (2017)MathSciNetMATH Qian, X., Fu, H., Song, S.: Conservative modified Crank-Nicolson and time-splitting wavelet methods for modeling Bose-Einstein condensates in delta potentials. Appl. Math. Comput. 307, 1–16 (2017)MathSciNetMATH
31.
go back to reference Rutka, V., Wiegmann, A.: Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials. Numer. Algor. 43, 309–330 (2006)MathSciNetCrossRefMATH Rutka, V., Wiegmann, A.: Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials. Numer. Algor. 43, 309–330 (2006)MathSciNetCrossRefMATH
32.
go back to reference Rutka, V., Li, Z.: An explicit jump immersed interface method for two-phase Navier-Stokes equations with interfaces. Comput. Method. Appl. M. 197, 2317–2328 (2008)MathSciNetCrossRefMATH Rutka, V., Li, Z.: An explicit jump immersed interface method for two-phase Navier-Stokes equations with interfaces. Comput. Method. Appl. M. 197, 2317–2328 (2008)MathSciNetCrossRefMATH
33.
go back to reference Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, New York (1999)MATH Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, New York (1999)MATH
34.
go back to reference Tang, X., Xu, G.: Instability of the solitary waves for the 1d NLS with an attrictive delta potential in the degenerate case. Math. Res. Lett. 29, 285–321 (2022)MathSciNetCrossRefMATH Tang, X., Xu, G.: Instability of the solitary waves for the 1d NLS with an attrictive delta potential in the degenerate case. Math. Res. Lett. 29, 285–321 (2022)MathSciNetCrossRefMATH
35.
go back to reference Tornberg, A.K.: Björn Engquist, Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19, 527–552 (2003)MathSciNetCrossRefMATH Tornberg, A.K.: Björn Engquist, Regularization techniques for numerical approximation of PDEs with singularities. J. Sci. Comput. 19, 527–552 (2003)MathSciNetCrossRefMATH
36.
go back to reference Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory, Springer Science and Business Media, (2004) Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory, Springer Science and Business Media, (2004)
37.
go back to reference Villegas, L.R., Alis, R., Lepilliez, M., Tanguy, S.: A ghost fluid/level set method for boiling flows and liquid evaporation: application to the Leidenfrost effect. J. Comput. Phys. 316, 789–813 (2016)MathSciNetCrossRefMATH Villegas, L.R., Alis, R., Lepilliez, M., Tanguy, S.: A ghost fluid/level set method for boiling flows and liquid evaporation: application to the Leidenfrost effect. J. Comput. Phys. 316, 789–813 (2016)MathSciNetCrossRefMATH
38.
go back to reference Wang, T.C., Guo, B.L., Xu, Q.B.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)MathSciNetCrossRefMATH Wang, T.C., Guo, B.L., Xu, Q.B.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)MathSciNetCrossRefMATH
39.
go back to reference Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM. J. Numer. Anal., 37 (2000) Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM. J. Numer. Anal., 37 (2000)
40.
go back to reference Witthaut, D., Mossmann, S., Korsch, H.J.: Bound and resonance states of the nonlinear Schrödinger equation in simple model systems. J. Phys. A: Math. Gen. 38, 1777–1792 (2005)CrossRefMATH Witthaut, D., Mossmann, S., Korsch, H.J.: Bound and resonance states of the nonlinear Schrödinger equation in simple model systems. J. Phys. A: Math. Gen. 38, 1777–1792 (2005)CrossRefMATH
Metadata
Title
Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential
Authors
Xuanxuan Zhou
Yongyong Cai
Xingdong Tang
Guixiang Xu
Publication date
01-11-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 4/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00551-3

Other articles of this Issue 4/2023

Calcolo 4/2023 Go to the issue

Premium Partner