Skip to main content
Top
Published in: Wireless Networks 2/2023

01-11-2022 | Original Paper

Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges

Authors: Michaël Mahamat, Ghada Jaber, Abdelmadjid Bouabdallah

Published in: Wireless Networks | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advent of the Internet of Things (IoT), with thousands of connected, heterogeneous, and energy-constrained devices, enables new application domains and improves our everyday life. In many IoT applications, IoT devices are deployed in open environments, without physical access controls to them. Hence, they are exposed to various threats and malicious attacks that may dramatically impact the IoT network and cause physical or economical harm. Due to the limited energy storage of IoT devices, securing them against these threats incurs an additional energy consumption, thus, depleting their battery and reducing network lifetime. In the literature, there is a huge number of research works that propose solutions for either security or energy management for IoT networks. However, research on security solutions that offer a good trade-off between ensuring a good security level and reduced energy consumption is scarce. In addition to that, existing surveys focused either on IoT energy management or on IoT security but not on both of them. Motivated by the aforementioned points, we present in this article a survey based on a new approach that tackles jointly the problem of security and its impacts on the energy efficiency of IoT networks. We propose a taxonomy of recent solutions that reduce energy consumption while efficiently securing IoT networks. We consider context-aware security for IoT networks as a valid approach to secure IoT networks while reducing the overall energy consumption. We also present recent advances and new paradigms such as artificial intelligence and Software-Defined Networking (SDN) and we discuss how they can be used to develop more robust and energy-aware security solutions for IoT. Finally, we present a general model for the development of energy-efficient IoT security solutions which provides a good trade-off between ensuring a high level of security for IoT applications while reducing energy consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2014). A survey on Internet of Things from industrial market perspective. IEEE Access, 2, 1660–1679.CrossRef Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2014). A survey on Internet of Things from industrial market perspective. IEEE Access, 2, 1660–1679.CrossRef
2.
go back to reference Atlam, H. F., Walters, R., & Wills, G. (2018). Internet of Things: State-of-the-art, challenges, applications, and open issues. International Journal of Intelligent Computing Research (IJICR), 9(3), 928–938.CrossRef Atlam, H. F., Walters, R., & Wills, G. (2018). Internet of Things: State-of-the-art, challenges, applications, and open issues. International Journal of Intelligent Computing Research (IJICR), 9(3), 928–938.CrossRef
3.
go back to reference Almusaylim, Z. A., & Zaman, N. (2019). A review on smart home present state and challenges: Linked to context-awareness Internet of Things (IoT). Wireless Networks, 25(6), 3193–3204.CrossRef Almusaylim, Z. A., & Zaman, N. (2019). A review on smart home present state and challenges: Linked to context-awareness Internet of Things (IoT). Wireless Networks, 25(6), 3193–3204.CrossRef
4.
go back to reference Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108(1), 363–388.CrossRef Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108(1), 363–388.CrossRef
5.
go back to reference Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., & Niyato, D. (2021). A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applications, 187, 103107.CrossRef Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., & Niyato, D. (2021). A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. Journal of Network and Computer Applications, 187, 103107.CrossRef
6.
go back to reference Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of Things (IoT) and the Energy Sector. Energies, 13(2), 494.CrossRef Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of Things (IoT) and the Energy Sector. Energies, 13(2), 494.CrossRef
7.
go back to reference Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys Tutorials, 17(4), 2347–2376.CrossRef
8.
go back to reference Javed, F., Afzal, M. K., Sharif, M., & Kim, B.-S. (2018). Internet of Things (IoT) operating systems support, networking technologies, applications, and challenges: A comparative review. IEEE Communications Surveys Tutorials, 20(3), 2062–2100.CrossRef Javed, F., Afzal, M. K., Sharif, M., & Kim, B.-S. (2018). Internet of Things (IoT) operating systems support, networking technologies, applications, and challenges: A comparative review. IEEE Communications Surveys Tutorials, 20(3), 2062–2100.CrossRef
9.
go back to reference Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182–8201.CrossRef Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182–8201.CrossRef
10.
go back to reference Chatterjee, B., Cao, N., Raychowdhury, A., & Sen, S. (2019). Context-aware intelligence in resource-constrained IoT nodes: Opportunities and challenges. IEEE Design Test, 36(2), 7–40.CrossRef Chatterjee, B., Cao, N., Raychowdhury, A., & Sen, S. (2019). Context-aware intelligence in resource-constrained IoT nodes: Opportunities and challenges. IEEE Design Test, 36(2), 7–40.CrossRef
11.
go back to reference de Matos, E., Tiburski, R. T., Amaral, L. A., & Hessel, F. (2018). Providing context-aware security for IoT environments through context sharing feature. In 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), (pp. 1711–1715). de Matos, E., Tiburski, R. T., Amaral, L. A., & Hessel, F. (2018). Providing context-aware security for IoT environments through context sharing feature. In 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), (pp. 1711–1715).
12.
go back to reference Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.CrossRef Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.CrossRef
13.
go back to reference Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M. M., Biswas, S., et al. (2020). Survey of network virtualization techniques for Internet of Things using SDN and NFV. ACM Computing Surveys, 53(2), 35:1-35:40. Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M. M., Biswas, S., et al. (2020). Survey of network virtualization techniques for Internet of Things using SDN and NFV. ACM Computing Surveys, 53(2), 35:1-35:40.
14.
go back to reference Molina Zarca, A., Bernabe, J. B., Trapero, R., Rivera, D., Villalobos, J., Skarmeta, A., et al. (2019). Security management architecture for NFV/SDN-aware IoT systems. IEEE Internet of Things Journal, 6(5), 8005–8020.CrossRef Molina Zarca, A., Bernabe, J. B., Trapero, R., Rivera, D., Villalobos, J., Skarmeta, A., et al. (2019). Security management architecture for NFV/SDN-aware IoT systems. IEEE Internet of Things Journal, 6(5), 8005–8020.CrossRef
15.
go back to reference Marino, F., Maggiani, L., Nao, L., Pagano, P., & Petracca, M. (2017). Towards softwarization in the IoT: Integration and evaluation of t-res in the oneM2M architecture. In 2017 IEEE conference on network softwarization (NetSoft), (pp. 1–5). Marino, F., Maggiani, L., Nao, L., Pagano, P., & Petracca, M. (2017). Towards softwarization in the IoT: Integration and evaluation of t-res in the oneM2M architecture. In 2017 IEEE conference on network softwarization (NetSoft), (pp. 1–5).
16.
go back to reference Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT security: Current solutions and future challenges. IEEE Communications Surveys Tutorials, 22(3), 1686–1721 (thirdquarter).CrossRef Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT security: Current solutions and future challenges. IEEE Communications Surveys Tutorials, 22(3), 1686–1721 (thirdquarter).CrossRef
17.
go back to reference Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Communications Surveys Tutorials, 22(3), 1646–1685 (thirdquarter).CrossRef Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A survey of machine and deep learning methods for Internet of Things (IoT) security. IEEE Communications Surveys Tutorials, 22(3), 1646–1685 (thirdquarter).CrossRef
18.
go back to reference Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications, 161, 102630.CrossRef Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based solutions for security of Internet of Things (IoT): A survey. Journal of Network and Computer Applications, 161, 102630.CrossRef
19.
go back to reference Sah, D. K., & Amgoth, T. (2020). Renewable energy harvesting schemes in wireless sensor networks: A survey. Information Fusion, 63, 223–247.CrossRef Sah, D. K., & Amgoth, T. (2020). Renewable energy harvesting schemes in wireless sensor networks: A survey. Information Fusion, 63, 223–247.CrossRef
20.
go back to reference Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey. Computer Networks, 141, 199–221.CrossRef Kouicem, D. E., Bouabdallah, A., & Lakhlef, H. (2018). Internet of things security: A top-down survey. Computer Networks, 141, 199–221.CrossRef
21.
go back to reference Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access, 7, 82721–82743.CrossRef Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access, 7, 82721–82743.CrossRef
22.
go back to reference Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). The security trade-offs in resource constrained nodes for IoT application. International Journal of Electronics and Communication Engineering, 12(1), 9. Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). The security trade-offs in resource constrained nodes for IoT application. International Journal of Electronics and Communication Engineering, 12(1), 9.
23.
go back to reference Said, O., Al-Makhadmeh, Z., & Tolba, A. (2020). EMS: An energy management scheme for green IoT environments. IEEE Access, 8, 44983–44998.CrossRef Said, O., Al-Makhadmeh, Z., & Tolba, A. (2020). EMS: An energy management scheme for green IoT environments. IEEE Access, 8, 44983–44998.CrossRef
24.
go back to reference Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the Internet of Things in smart cities. IEEE Communications Magazine, 55(1), 84–91.CrossRef Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the Internet of Things in smart cities. IEEE Communications Magazine, 55(1), 84–91.CrossRef
25.
go back to reference Abid, K., Jaber, G., Lakhlef, H., Lounis, A., & Bouabdallah, A. (2020). An energy efficient architecture of self-sustainable WSN based on energy harvesting and wireless charging with consideration of deployment cost. In Proceedings of the 16th ACM symposium on QoS and security for wireless and mobile networks, Q2SWinet ’20 (pp. 109–114). Association for Computing Machinery. Abid, K., Jaber, G., Lakhlef, H., Lounis, A., & Bouabdallah, A. (2020). An energy efficient architecture of self-sustainable WSN based on energy harvesting and wireless charging with consideration of deployment cost. In Proceedings of the 16th ACM symposium on QoS and security for wireless and mobile networks, Q2SWinet ’20 (pp. 109–114). Association for Computing Machinery.
26.
go back to reference Sanislav, T., Dan Mois, G., Zeadally, S., & Folea, S. C. (2021). Energy harvesting techniques for Internet of Things (IoT). IEEE Access, 9, 39530–39549.CrossRef Sanislav, T., Dan Mois, G., Zeadally, S., & Folea, S. C. (2021). Energy harvesting techniques for Internet of Things (IoT). IEEE Access, 9, 39530–39549.CrossRef
27.
go back to reference Sharma, H., Haque, A., & Jaffery, Z. A. (2018). Solar energy harvesting wireless sensor network nodes: A survey. Journal of Renewable and Sustainable Energy, 10(2), 023704.CrossRef Sharma, H., Haque, A., & Jaffery, Z. A. (2018). Solar energy harvesting wireless sensor network nodes: A survey. Journal of Renewable and Sustainable Energy, 10(2), 023704.CrossRef
28.
go back to reference Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., & Heinzelman, W. (2015). Smart RF energy harvesting communications: Challenges and opportunities. IEEE Communications Magazine, 53(4), 70–78.CrossRef Mishra, D., De, S., Jana, S., Basagni, S., Chowdhury, K., & Heinzelman, W. (2015). Smart RF energy harvesting communications: Challenges and opportunities. IEEE Communications Magazine, 53(4), 70–78.CrossRef
29.
go back to reference Curry, J., & Harris, N. (2019). Powering the environmental Internet of Things. Sensors, 19(8), 1940.CrossRef Curry, J., & Harris, N. (2019). Powering the environmental Internet of Things. Sensors, 19(8), 1940.CrossRef
30.
go back to reference Adila, A. S., Husam, A., & Husi, G. (2018). Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. In 2018 2nd international symposium on small-scale intelligent manufacturing systems (SIMS) (pp. 1–5). Adila, A. S., Husam, A., & Husi, G. (2018). Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. In 2018 2nd international symposium on small-scale intelligent manufacturing systems (SIMS) (pp. 1–5).
31.
go back to reference Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125.CrossRef
32.
go back to reference Tedeschi, P., Sciancalepore, S., & Di Pietro, R. (2020). Security in energy harvesting networks: A survey of current solutions and research challenges. IEEE Communications Surveys Tutorials, 22(4), 2658–2693 (Fourthquarter).CrossRef Tedeschi, P., Sciancalepore, S., & Di Pietro, R. (2020). Security in energy harvesting networks: A survey of current solutions and research challenges. IEEE Communications Surveys Tutorials, 22(4), 2658–2693 (Fourthquarter).CrossRef
33.
go back to reference Qingqing, W., Zhang, G., Ng, D. W. K., Chen, W., & Schober, R. (2019). Generalized wireless-powered communications: When to activate wireless power transfer? IEEE Transactions on Vehicular Technology, 68(8), 8243–8248.CrossRef Qingqing, W., Zhang, G., Ng, D. W. K., Chen, W., & Schober, R. (2019). Generalized wireless-powered communications: When to activate wireless power transfer? IEEE Transactions on Vehicular Technology, 68(8), 8243–8248.CrossRef
34.
go back to reference Wang, C., Li, J., Yang, Y., & Ye, F. (2018). Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Transactions on Mobile Computing, 17(3), 560–576.CrossRef Wang, C., Li, J., Yang, Y., & Ye, F. (2018). Combining solar energy harvesting with wireless charging for hybrid wireless sensor networks. IEEE Transactions on Mobile Computing, 17(3), 560–576.CrossRef
35.
go back to reference Na, W., Park, J., Lee, C., Park, K., Kim, J., & Cho, S. (2018). Energy-efficient mobile charging for wireless power transfer in Internet of Things networks. IEEE Internet of Things Journal, 5(1), 79–92.CrossRef Na, W., Park, J., Lee, C., Park, K., Kim, J., & Cho, S. (2018). Energy-efficient mobile charging for wireless power transfer in Internet of Things networks. IEEE Internet of Things Journal, 5(1), 79–92.CrossRef
36.
go back to reference Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2021). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Systems Journal, 15(1), 27–36.CrossRef Gharaei, N., Al-Otaibi, Y. D., Butt, S. A., Malebary, S. J., Rahim, S., & Sahar, G. (2021). Energy-efficient tour optimization of wireless mobile chargers for rechargeable sensor networks. IEEE Systems Journal, 15(1), 27–36.CrossRef
37.
go back to reference Lin, C., Zhou, Y., Dai, H., Deng, J., & Wu, G. (2018). MPF: Prolonging network lifetime of wireless rechargeable sensor networks by mixing partial charge and full charge. In 2018 15th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–9). Lin, C., Zhou, Y., Dai, H., Deng, J., & Wu, G. (2018). MPF: Prolonging network lifetime of wireless rechargeable sensor networks by mixing partial charge and full charge. In 2018 15th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 1–9).
38.
go back to reference Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT security: An exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Communications Surveys Tutorials, 21(3), 2702–2733 (thirdquarter).CrossRef Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT security: An exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Communications Surveys Tutorials, 21(3), 2702–2733 (thirdquarter).CrossRef
39.
go back to reference Butun, I., Österberg, P., & Song, H. (2020). Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys Tutorials, 22(1), 616–644 (Firstquarter).CrossRef Butun, I., Österberg, P., & Song, H. (2020). Security of the Internet of Things: Vulnerabilities, attacks, and countermeasures. IEEE Communications Surveys Tutorials, 22(1), 616–644 (Firstquarter).CrossRef
40.
go back to reference Nguyen, V.-L., Lin, P.-C., & Hwang, R.-H. (2019). Energy depletion attacks in low power wireless networks. IEEE Access, 7, 51915–51932.CrossRef Nguyen, V.-L., Lin, P.-C., & Hwang, R.-H. (2019). Energy depletion attacks in low power wireless networks. IEEE Access, 7, 51915–51932.CrossRef
41.
go back to reference Noor, M. M., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148, 283–294.CrossRef Noor, M. M., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148, 283–294.CrossRef
42.
go back to reference Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications, 169, 102763.CrossRef Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications, 169, 102763.CrossRef
43.
go back to reference Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of Internet of Things based on cryptographic algorithms: A survey. Wireless Networks, 27(2), 1515–1555.CrossRef Mousavi, S. K., Ghaffari, A., Besharat, S., & Afshari, H. (2021). Security of Internet of Things based on cryptographic algorithms: A survey. Wireless Networks, 27(2), 1515–1555.CrossRef
44.
go back to reference Ferrag, M. A., Shu, L., Yang, X., Derhab, A., & Maglaras, L. (2020). Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access, 8, 32031–32053.CrossRef Ferrag, M. A., Shu, L., Yang, X., Derhab, A., & Maglaras, L. (2020). Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access, 8, 32031–32053.CrossRef
45.
go back to reference Szymanski, T. H. (2017). Security and privacy for a green Internet of Things. IT Professional, 19(5), 34–41.CrossRef Szymanski, T. H. (2017). Security and privacy for a green Internet of Things. IT Professional, 19(5), 34–41.CrossRef
46.
go back to reference Qin, Z., Denker, G., Giannelli, C., Bellavista, P., & Venkatasubramanian, N. (2014). A software defined networking architecture for the Internet-of-Things. In 2014 IEEE Network Operations and Management Symposium (NOMS) (pp. 1–9). Qin, Z., Denker, G., Giannelli, C., Bellavista, P., & Venkatasubramanian, N. (2014). A software defined networking architecture for the Internet-of-Things. In 2014 IEEE Network Operations and Management Symposium (NOMS) (pp. 1–9).
47.
go back to reference Wan, Y., Xu, K., Xue, G., & Wang, F. (2020). IoTArgos: A multi-layer security monitoring system for Internet-of-Things in smart homes. In IEEE INFOCOM 2020: IEEE conference on computer communications (pp. 874–883). Wan, Y., Xu, K., Xue, G., & Wang, F. (2020). IoTArgos: A multi-layer security monitoring system for Internet-of-Things in smart homes. In IEEE INFOCOM 2020: IEEE conference on computer communications (pp. 874–883).
48.
go back to reference Tan, X., Shaojing, S., Zuo, Z., Guo, X., & Sun, X. (2019). Intrusion detection of UAVs based on the deep belief network optimized by PSO. Sensors, 19(24), 5529.CrossRef Tan, X., Shaojing, S., Zuo, Z., Guo, X., & Sun, X. (2019). Intrusion detection of UAVs based on the deep belief network optimized by PSO. Sensors, 19(24), 5529.CrossRef
49.
go back to reference Shahid, M. R., Blanc, G., Zhang, Z., & Debar, H.. (2019). Anomalous communications detection in IoT networks using sparse autoencoders. In 2019 IEEE 18th international symposium on network computing and applications (NCA) (pp. 1–5). Shahid, M. R., Blanc, G., Zhang, Z., & Debar, H.. (2019). Anomalous communications detection in IoT networks using sparse autoencoders. In 2019 IEEE 18th international symposium on network computing and applications (NCA) (pp. 1–5).
50.
go back to reference Kulkarni, R. V., & Venayagamoorthy, G. K. (2009). Neural network based secure media access control protocol for wireless sensor networks. In 2009 International joint conference on neural networks (pp. 1680–1687). Kulkarni, R. V., & Venayagamoorthy, G. K. (2009). Neural network based secure media access control protocol for wireless sensor networks. In 2009 International joint conference on neural networks (pp. 1680–1687).
51.
go back to reference Vu, L., Nguyen, Q. U., Nguyen, D. N., Hoang, D. T., & Dutkiewicz, E. (2020). Deep transfer learning for IoT attack detection. IEEE Access, 8, 107335–107344.CrossRef Vu, L., Nguyen, Q. U., Nguyen, D. N., Hoang, D. T., & Dutkiewicz, E. (2020). Deep transfer learning for IoT attack detection. IEEE Access, 8, 107335–107344.CrossRef
52.
go back to reference Yang, Y., Zheng, K., Chunhua, W., & Yang, Y. (2019). Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors, 19(11), 2528.CrossRef Yang, Y., Zheng, K., Chunhua, W., & Yang, Y. (2019). Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors, 19(11), 2528.CrossRef
53.
go back to reference Canbalaban, E., & Sen, S. (2020). A cross-layer intrusion detection system for RPL-based Internet of Things. In Ad-hoc, mobile, and wireless networks (pp. 214–227). Springer. Canbalaban, E., & Sen, S. (2020). A cross-layer intrusion detection system for RPL-based Internet of Things. In Ad-hoc, mobile, and wireless networks (pp. 214–227). Springer.
54.
go back to reference Tu, S., Waqas, M., Rehman, S. U., Aamir, M., Rehman, O. U., Jianbiao, Z., & Chang, C. (2018). Security in fog computing: A novel technique to tackle an impersonation attack. IEEE Access, 6, 74993–75001.CrossRef Tu, S., Waqas, M., Rehman, S. U., Aamir, M., Rehman, O. U., Jianbiao, Z., & Chang, C. (2018). Security in fog computing: A novel technique to tackle an impersonation attack. IEEE Access, 6, 74993–75001.CrossRef
55.
go back to reference Uprety, A., & Rawat, D. B. (2021). Reinforcement learning for IoT security: A comprehensive survey. IEEE Internet of Things Journal, 8(11), 8693–8706.CrossRef Uprety, A., & Rawat, D. B. (2021). Reinforcement learning for IoT security: A comprehensive survey. IEEE Internet of Things Journal, 8(11), 8693–8706.CrossRef
56.
go back to reference Zolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement learning for attack mitigation in SDN-enabled networks. In 2020 6th IEEE conference on network softwarization (NetSoft) (pp. 282–286). Zolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement learning for attack mitigation in SDN-enabled networks. In 2020 6th IEEE conference on network softwarization (NetSoft) (pp. 282–286).
57.
go back to reference Fan, Y., Li, Y., Zhan, M., Cui, H., & Zhang, Y. (2020). IoTDefender: A federated transfer learning intrusion detection framework for 5G IoT. In 2020 IEEE 14th international conference on big data science and engineering (BigDataSE) (pp. 88–95). Fan, Y., Li, Y., Zhan, M., Cui, H., & Zhang, Y. (2020). IoTDefender: A federated transfer learning intrusion detection framework for 5G IoT. In 2020 IEEE 14th international conference on big data science and engineering (BigDataSE) (pp. 88–95).
58.
go back to reference Li, Z., Shahidehpour, M., & Liu, X. (2018). Cyber-secure decentralized energy management for IoT-enabled active distribution networks. Journal of Modern Power Systems and Clean Energy, 6(5), 900–917.CrossRef Li, Z., Shahidehpour, M., & Liu, X. (2018). Cyber-secure decentralized energy management for IoT-enabled active distribution networks. Journal of Modern Power Systems and Clean Energy, 6(5), 900–917.CrossRef
59.
go back to reference Lin, H., Hu, J., Wang, X., Alhamid, M. F., & Piran, M. J. (2021). Toward secure data fusion in industrial IoT using transfer learning. IEEE Transactions on Industrial Informatics, 17(10), 7114–7122.CrossRef Lin, H., Hu, J., Wang, X., Alhamid, M. F., & Piran, M. J. (2021). Toward secure data fusion in industrial IoT using transfer learning. IEEE Transactions on Industrial Informatics, 17(10), 7114–7122.CrossRef
60.
go back to reference de Assis, M. V. O., Carvalho, L. F., Rodrigues, J. J. P. C., Lloret, J., & Proença, M. L., Jr. (2020). Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Computers & Electrical Engineering, 86, 106738.CrossRef de Assis, M. V. O., Carvalho, L. F., Rodrigues, J. J. P. C., Lloret, J., & Proença, M. L., Jr. (2020). Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Computers & Electrical Engineering, 86, 106738.CrossRef
61.
go back to reference García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88.CrossRef García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134, 75–88.CrossRef
62.
go back to reference Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight cryptography algorithms for resource-constrained IoT devices: A review, comparison and research opportunities. IEEE Access, 9, 28177–28193.CrossRef Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight cryptography algorithms for resource-constrained IoT devices: A review, comparison and research opportunities. IEEE Access, 9, 28177–28193.CrossRef
63.
go back to reference Mao, B., Kawamoto, Y., & Kato, N. (2020). AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things. IEEE Internet of Things Journal, 7(8), 7032–7042.CrossRef Mao, B., Kawamoto, Y., & Kato, N. (2020). AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things. IEEE Internet of Things Journal, 7(8), 7032–7042.CrossRef
64.
go back to reference de Meulenaer, G., Gosset, F., Standaert, F., & Pereira, O. (2008). On the energy cost of communication and cryptography in wireless sensor networks. In 2008 IEEE international conference on wireless and mobile computing, networking and communications (pp. 580–585). de Meulenaer, G., Gosset, F., Standaert, F., & Pereira, O. (2008). On the energy cost of communication and cryptography in wireless sensor networks. In 2008 IEEE international conference on wireless and mobile computing, networking and communications (pp. 580–585).
65.
go back to reference Schaumont, P., Yuce, B., Pabbuleti, K., & Mane, D. (2016). Secure authentication with energy-harvesting: A multi-dimensional balancing act. Sustainable Computing: Informatics and Systems, 12, 83–95. Schaumont, P., Yuce, B., Pabbuleti, K., & Mane, D. (2016). Secure authentication with energy-harvesting: A multi-dimensional balancing act. Sustainable Computing: Informatics and Systems, 12, 83–95.
67.
go back to reference Wheeler, D. J., & Needham, R. M. (1994). TEA, a tiny encryption algorithm. In Fast software encryption (pp. 363–366). Springer. Wheeler, D. J., & Needham, R. M. (1994). TEA, a tiny encryption algorithm. In Fast software encryption (pp. 363–366). Springer.
68.
go back to reference Needham, R. M., & Wheeler, D. J. (1997). Tea extensions. Report, Cambridge University. Needham, R. M., & Wheeler, D. J. (1997). Tea extensions. Report, Cambridge University.
69.
go back to reference Brickell, E. F., Denning, D. E., Kent, S. T., Maher, D. P., & Tuchman, W. (1993). SKIPJACK review. Interim report: The Skipjack Algorithm. Brickell, E. F., Denning, D. E., Kent, S. T., Maher, D. P., & Tuchman, W. (1993). SKIPJACK review. Interim report: The Skipjack Algorithm.
70.
go back to reference Maitra, S., & Yelamarthi, K. (2019). Rapidly deployable IoT architecture with data security: Implementation and experimental evaluation. Sensors, 19(11), 2484.CrossRef Maitra, S., & Yelamarthi, K. (2019). Rapidly deployable IoT architecture with data security: Implementation and experimental evaluation. Sensors, 19(11), 2484.CrossRef
71.
go back to reference Kane, L. E., Chen, J. J., Thomas, R., Liu, V., & Mckague, M. (2020). Security and performance in IoT: A balancing act. IEEE Access, 8, 121969–121986.CrossRef Kane, L. E., Chen, J. J., Thomas, R., Liu, V., & Mckague, M. (2020). Security and performance in IoT: A balancing act. IEEE Access, 8, 121969–121986.CrossRef
72.
go back to reference Aerabi, E., Bohlouli, M., Livany, M. H. A., Fazeli, M., Papadimitriou, A., & Hely, D. (2020). Design space exploration for ultra-low-energy and secure IoT MCUs. ACM Transactions on Embedded Computing Systems, 19(3), 19:1-19:34.CrossRef Aerabi, E., Bohlouli, M., Livany, M. H. A., Fazeli, M., Papadimitriou, A., & Hely, D. (2020). Design space exploration for ultra-low-energy and secure IoT MCUs. ACM Transactions on Embedded Computing Systems, 19(3), 19:1-19:34.CrossRef
73.
go back to reference Girgenti, B., Perazzo, P., Vallati, C., Righetti, F., Dini, G., & Anastasi, G. (2019). On the feasibility of attribute-based encryption on constrained IoT devices for smart systems. In 2019 IEEE international conference on smart computing (SMARTCOMP) (pp. 225–232). Girgenti, B., Perazzo, P., Vallati, C., Righetti, F., Dini, G., & Anastasi, G. (2019). On the feasibility of attribute-based encryption on constrained IoT devices for smart systems. In 2019 IEEE international conference on smart computing (SMARTCOMP) (pp. 225–232).
74.
go back to reference Conceição, F., Oualha, N., & Zeghlache, D. (2018). An energy model for the IoT: Secure networking perspective. In 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–5). Conceição, F., Oualha, N., & Zeghlache, D. (2018). An energy model for the IoT: Secure networking perspective. In 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 1–5).
75.
go back to reference Lee, D.-H., & Lee, I.-Y. (2020). A lightweight authentication and key agreement schemes for IoT environments. Sensors, 20(18), 5350.CrossRef Lee, D.-H., & Lee, I.-Y. (2020). A lightweight authentication and key agreement schemes for IoT environments. Sensors, 20(18), 5350.CrossRef
76.
go back to reference Seok, B., Costa Sapalo Sicato, J., Erzhena, T., Xuan, C., Pan, Y., & Park, J. H. (2020). Secure D2D communication for 5G IoT network based on lightweight cryptography. Applied Sciences, 10(1), 217.CrossRef Seok, B., Costa Sapalo Sicato, J., Erzhena, T., Xuan, C., Pan, Y., & Park, J. H. (2020). Secure D2D communication for 5G IoT network based on lightweight cryptography. Applied Sciences, 10(1), 217.CrossRef
77.
go back to reference Kommuru, K. J. S. R., Kadari, K. K. Y., & Alluri, B. K. R. (2018). A novel approach to balance the trade-off between security and energy consumption in WSN. In 2018 2nd international conference on micro-electronics and telecommunication engineering (ICMETE) (pp. 85–90). Kommuru, K. J. S. R., Kadari, K. K. Y., & Alluri, B. K. R. (2018). A novel approach to balance the trade-off between security and energy consumption in WSN. In 2018 2nd international conference on micro-electronics and telecommunication engineering (ICMETE) (pp. 85–90).
78.
go back to reference Ateniese, G., Bianchi, G., Capossele, A. T., Petrioli, C., & Spenza, D. (2017). HELIOS: Outsourcing of security operations in green wireless sensor networks. In 2017 IEEE 85th vehicular technology conference (VTC spring) (pp. 1–7). Ateniese, G., Bianchi, G., Capossele, A. T., Petrioli, C., & Spenza, D. (2017). HELIOS: Outsourcing of security operations in green wireless sensor networks. In 2017 IEEE 85th vehicular technology conference (VTC spring) (pp. 1–7).
79.
go back to reference Suslowicz, C., Krishnan, A. S., & Schaumont, P. (2017). Optimizing cryptography in energy harvesting applications. In Proceedings of the 2017 workshop on attacks and solutions in hardware security, ASHES ’17 (pp. 17–26). Association for Computing Machinery. Suslowicz, C., Krishnan, A. S., & Schaumont, P. (2017). Optimizing cryptography in energy harvesting applications. In Proceedings of the 2017 workshop on attacks and solutions in hardware security, ASHES ’17 (pp. 17–26). Association for Computing Machinery.
80.
go back to reference Fang, X., Yang, M., & Wenjia, W. (2018). Security cost aware data communication in low-power IoT sensors with energy harvesting. Sensors, 18(12), 4400.CrossRef Fang, X., Yang, M., & Wenjia, W. (2018). Security cost aware data communication in low-power IoT sensors with energy harvesting. Sensors, 18(12), 4400.CrossRef
81.
go back to reference De Rango, F., Potrino, G., Tropea, M., & Fazio, P. (2020). Energy-aware dynamic Internet of Things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive and Mobile Computing, 61, 101105.CrossRef De Rango, F., Potrino, G., Tropea, M., & Fazio, P. (2020). Energy-aware dynamic Internet of Things security system based on elliptic curve cryptography and message queue telemetry transport protocol for mitigating replay attacks. Pervasive and Mobile Computing, 61, 101105.CrossRef
82.
go back to reference Mohd, B. J., Yousef, K. M. A., AlMajali, A., & Hayajneh, T. (2019). Power-aware adaptive encryption. In 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT) (pp. 711–716). Mohd, B. J., Yousef, K. M. A., AlMajali, A., & Hayajneh, T. (2019). Power-aware adaptive encryption. In 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT) (pp. 711–716).
83.
go back to reference Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K.-K.R. (2020). An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Transactions on Services Computing, 13(4), 625–638.CrossRef Yazdinejad, A., Parizi, R. M., Dehghantanha, A., Zhang, Q., & Choo, K.-K.R. (2020). An energy-efficient SDN controller architecture for IoT networks with blockchain-based security. IEEE Transactions on Services Computing, 13(4), 625–638.CrossRef
84.
go back to reference Farooq, U., Ul Hasan, N., Baig, I., & Shehzad, N. (2019). Efficient adaptive framework for securing the Internet of Things devices. EURASIP Journal on Wireless Communications and Networking, 2019(1), 210.CrossRef Farooq, U., Ul Hasan, N., Baig, I., & Shehzad, N. (2019). Efficient adaptive framework for securing the Internet of Things devices. EURASIP Journal on Wireless Communications and Networking, 2019(1), 210.CrossRef
85.
go back to reference Di Mauro, A. (2015). On the impact of energy harvesting on wireless sensor network security. Di Mauro, A. (2015). On the impact of energy harvesting on wireless sensor network security.
86.
go back to reference Wang, B., Sun, Y., & Xiaodong, X. (2021). A scalable and energy-efficient anomaly detection scheme in wireless SDN-based mMTC networks for IoT. IEEE Internet of Things Journal, 8(3), 1388–1405.CrossRef Wang, B., Sun, Y., & Xiaodong, X. (2021). A scalable and energy-efficient anomaly detection scheme in wireless SDN-based mMTC networks for IoT. IEEE Internet of Things Journal, 8(3), 1388–1405.CrossRef
87.
go back to reference Conceicao, F. (2019). Network survival with energy harvesting: Secure cooperation and device assisted networking. Ph.D. thesis, Université Paris Saclay (COmUE). Conceicao, F. (2019). Network survival with energy harvesting: Secure cooperation and device assisted networking. Ph.D. thesis, Université Paris Saclay (COmUE).
88.
go back to reference Hellaoui, H., Koudil, M., & Bouabdallah, A. (2020). Energy efficiency in security of 5G-based IoT: An end-to-end adaptive approach. IEEE Internet of Things Journal, 7(7), 6589–6602.CrossRef Hellaoui, H., Koudil, M., & Bouabdallah, A. (2020). Energy efficiency in security of 5G-based IoT: An end-to-end adaptive approach. IEEE Internet of Things Journal, 7(7), 6589–6602.CrossRef
89.
go back to reference Mohammed, T., Albeshri, A., Katib, I., & Mehmood, R. (2020). UbiPriSEQ: Deep reinforcement learning to manage privacy, security, energy, and QoS in 5G IoT HetNets. Applied Sciences, 10(20), 7120.CrossRef Mohammed, T., Albeshri, A., Katib, I., & Mehmood, R. (2020). UbiPriSEQ: Deep reinforcement learning to manage privacy, security, energy, and QoS in 5G IoT HetNets. Applied Sciences, 10(20), 7120.CrossRef
90.
go back to reference Mao, B., Kawamoto, Y., Liu, J., & Kato, N. (2019). Harvesting and threat aware security configuration strategy for IEEE 802.15.4 based IoT networks. IEEE Communications Letters, 23(11), 2130–2134.CrossRef Mao, B., Kawamoto, Y., Liu, J., & Kato, N. (2019). Harvesting and threat aware security configuration strategy for IEEE 802.15.4 based IoT networks. IEEE Communications Letters, 23(11), 2130–2134.CrossRef
91.
go back to reference Zhou, P., Zhong, G., Hu, M., Li, R., Yan, Q., Wang, K., et al. (2019). Privacy-preserving and residential context-aware online learning for IoT-enabled energy saving with big data support in smart home environment. IEEE Internet of Things Journal, 6(5), 7450–7468.CrossRef Zhou, P., Zhong, G., Hu, M., Li, R., Yan, Q., Wang, K., et al. (2019). Privacy-preserving and residential context-aware online learning for IoT-enabled energy saving with big data support in smart home environment. IEEE Internet of Things Journal, 6(5), 7450–7468.CrossRef
92.
go back to reference Massad, M. A., & Alsaify, B. A. (2020). MQTTSec based on context-aware cryptographic selection algorithm (CASA) for resource-constrained IoT devices. In 2020 11th international conference on information and communication systems (ICICS) (pp. 349–354). Massad, M. A., & Alsaify, B. A. (2020). MQTTSec based on context-aware cryptographic selection algorithm (CASA) for resource-constrained IoT devices. In 2020 11th international conference on information and communication systems (ICICS) (pp. 349–354).
93.
go back to reference Roy, S., Sankaran, S., Singh, P., & Sridhar, R. (2018). Modeling context-adaptive energy-aware security in mobile devices. In 2018 IEEE 43rd conference on local computer networks workshops (LCN workshops) (pp. 105–109). Roy, S., Sankaran, S., Singh, P., & Sridhar, R. (2018). Modeling context-adaptive energy-aware security in mobile devices. In 2018 IEEE 43rd conference on local computer networks workshops (LCN workshops) (pp. 105–109).
94.
go back to reference Asaithambi, A., Dutta, A., Rao, C., & Roy, S. (2020). Online context-adaptive energy-aware security allocation in mobile devices: A tale of two algorithms. In D. Van Hung, & M. D’Souza (Eds.) Distributed computing and internet technology (pp. 281–295). Springer. Asaithambi, A., Dutta, A., Rao, C., & Roy, S. (2020). Online context-adaptive energy-aware security allocation in mobile devices: A tale of two algorithms. In D. Van Hung, & M. D’Souza (Eds.) Distributed computing and internet technology (pp. 281–295). Springer.
95.
go back to reference Hellaoui, H., Koudil, M., & Bouabdallah, A. (2017). Energy-efficient mechanisms in security of the internet of things: A survey. Computer Networks, 127, 173–189.CrossRef Hellaoui, H., Koudil, M., & Bouabdallah, A. (2017). Energy-efficient mechanisms in security of the internet of things: A survey. Computer Networks, 127, 173–189.CrossRef
96.
go back to reference Yousefpoor, M. S., Yousefpoor, E., Barati, H., Barati, A., Movaghar, A., & Hosseinzadeh, M. (2021). Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. Journal of Network and Computer Applications, 190, 103118.CrossRef Yousefpoor, M. S., Yousefpoor, E., Barati, H., Barati, A., Movaghar, A., & Hosseinzadeh, M. (2021). Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. Journal of Network and Computer Applications, 190, 103118.CrossRef
97.
go back to reference Loske, M., Rothe, L., & Gertler, D. G. (2019). Context-aware authentication: State-of-the-art evaluation and adaption to the IIoT. In 2019 IEEE 5th world forum on Internet of Things (WF-IoT) (pp. 64–69). Loske, M., Rothe, L., & Gertler, D. G. (2019). Context-aware authentication: State-of-the-art evaluation and adaption to the IIoT. In 2019 IEEE 5th world forum on Internet of Things (WF-IoT) (pp. 64–69).
98.
go back to reference Sikder, A. K., Babun, L., Aksu, H., & Uluagac, A. S. (2019). Aegis: A context-aware security framework for smart home systems. In Proceedings of the 35th annual computer security applications conference, ACSAC ’19 (pp. 28–41). Association for Computing Machinery. Sikder, A. K., Babun, L., Aksu, H., & Uluagac, A. S. (2019). Aegis: A context-aware security framework for smart home systems. In Proceedings of the 35th annual computer security applications conference, ACSAC ’19 (pp. 28–41). Association for Computing Machinery.
99.
go back to reference Hussain, Y., Zhiqiu, H., Akbar, M. A., Alsanad, A., Alsanad, A. A., Nawaz, A., et al. (2020). Context-aware trust and reputation model for fog-based IoT. IEEE Access, 8, 31622–31632.CrossRef Hussain, Y., Zhiqiu, H., Akbar, M. A., Alsanad, A., Alsanad, A. A., Nawaz, A., et al. (2020). Context-aware trust and reputation model for fog-based IoT. IEEE Access, 8, 31622–31632.CrossRef
100.
go back to reference Schaumont, P. (2017). Security in the Internet of Things: A challenge of scale. In Design, automation test in Europe conference exhibition (DATE), 2017 (pp. 674–679). Schaumont, P. (2017). Security in the Internet of Things: A challenge of scale. In Design, automation test in Europe conference exhibition (DATE), 2017 (pp. 674–679).
101.
go back to reference Kansal, A., Hsu, J., Srivastava, M., & Raqhunathan, V. (2006). Harvesting aware power management for sensor networks. In 2006 43rd ACM/IEEE design automation conference (pp. 651–656). Kansal, A., Hsu, J., Srivastava, M., & Raqhunathan, V. (2006). Harvesting aware power management for sensor networks. In 2006 43rd ACM/IEEE design automation conference (pp. 651–656).
102.
go back to reference Cammarano, A., Petrioli, C., & Spenza, D. (2012). Pro-energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. In 2012 IEEE 9th international conference on mobile ad-hoc and sensor systems (MASS 2012) (pp. 75–83). Cammarano, A., Petrioli, C., & Spenza, D. (2012). Pro-energy: A novel energy prediction model for solar and wind energy-harvesting wireless sensor networks. In 2012 IEEE 9th international conference on mobile ad-hoc and sensor systems (MASS 2012) (pp. 75–83).
103.
go back to reference Piorno, J. R., Bergonzini, C., Atienza, D., & Rosing, T. S. (2009). Prediction and management in energy harvested wireless sensor nodes. In 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace electronic systems technology (pp. 6–10). Piorno, J. R., Bergonzini, C., Atienza, D., & Rosing, T. S. (2009). Prediction and management in energy harvested wireless sensor nodes. In 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace electronic systems technology (pp. 6–10).
104.
go back to reference Kosunalp, S. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.CrossRef Kosunalp, S. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.CrossRef
105.
go back to reference Deb, M., & Roy, S. (2021). Enhanced-Pro: A New Enhanced Solar Energy Harvested Prediction Model for Wireless Sensor Networks. Wireless Personal Communications, 117(2), 1103–1121.CrossRef Deb, M., & Roy, S. (2021). Enhanced-Pro: A New Enhanced Solar Energy Harvested Prediction Model for Wireless Sensor Networks. Wireless Personal Communications, 117(2), 1103–1121.CrossRef
106.
go back to reference Chang, S.-Y., Kumar, S. L. S., Hu, Y.-C., & Park, Y. (2019). Power-positive networking: Wireless-charging-based networking to protect energy against battery DoS attacks. ACM Transactions on Sensor Networks, 15(3), 27:1-27:25.CrossRef Chang, S.-Y., Kumar, S. L. S., Hu, Y.-C., & Park, Y. (2019). Power-positive networking: Wireless-charging-based networking to protect energy against battery DoS attacks. ACM Transactions on Sensor Networks, 15(3), 27:1-27:25.CrossRef
107.
go back to reference Chen, D., Yang, W., Hu, J., Cai, Y., & Tang, X. (2018). Energy-efficient secure transmission design for the Internet of Things with an untrusted relay. IEEE Access, 6, 11862–11870.CrossRef Chen, D., Yang, W., Hu, J., Cai, Y., & Tang, X. (2018). Energy-efficient secure transmission design for the Internet of Things with an untrusted relay. IEEE Access, 6, 11862–11870.CrossRef
108.
go back to reference Lee, K., Hong, J.-P., & Lee, W. (2021). Deep learning framework for secure communication with an energy harvesting receiver. IEEE Transactions on Vehicular Technology, 70(10), 10121–10132.CrossRef Lee, K., Hong, J.-P., & Lee, W. (2021). Deep learning framework for secure communication with an energy harvesting receiver. IEEE Transactions on Vehicular Technology, 70(10), 10121–10132.CrossRef
109.
go back to reference Turan, M. S., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J., & Kelsey, J. (2021). Status report on the second round of the NIST lightweight cryptography standardization process. Technical report, National Institute of Standards and Technology. Turan, M. S., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J., & Kelsey, J. (2021). Status report on the second round of the NIST lightweight cryptography standardization process. Technical report, National Institute of Standards and Technology.
110.
go back to reference Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., & Zhuang, W. (2019). Learning-based computation offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technology, 68(2), 1930–1941.CrossRef Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D., & Zhuang, W. (2019). Learning-based computation offloading for IoT devices with energy harvesting. IEEE Transactions on Vehicular Technology, 68(2), 1930–1941.CrossRef
111.
go back to reference Li, J., Hyun, J. H., & SamHa, D. (2018). A multi-source energy harvesting system to power microcontrollers for cryptography. In IECON 2018: 44th annual conference of the IEEE Industrial Electronics Society (pp. 901–906). Li, J., Hyun, J. H., & SamHa, D. (2018). A multi-source energy harvesting system to power microcontrollers for cryptography. In IECON 2018: 44th annual conference of the IEEE Industrial Electronics Society (pp. 901–906).
112.
go back to reference Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). Impact of duty cycle protocols on security cost of IoT. In 2018 9th international conference on information and communication systems (ICICS) (pp. 25–30). Alharby, S., Harris, N., Weddell, A., & Reeve, J. (2018). Impact of duty cycle protocols on security cost of IoT. In 2018 9th international conference on information and communication systems (ICICS) (pp. 25–30).
113.
go back to reference Rawat, D. B., & Reddy, S. R. (2017). Software defined networking architecture, security and energy efficiency: A survey. IEEE Communications Surveys Tutorials, 19(1), 325–346.CrossRef Rawat, D. B., & Reddy, S. R. (2017). Software defined networking architecture, security and energy efficiency: A survey. IEEE Communications Surveys Tutorials, 19(1), 325–346.CrossRef
114.
go back to reference Liu, X., Wei, Yu., Liang, F., Griffith, D., & Golmie, N. (2021). Toward deep transfer learning in industrial Internet of Things. IEEE Internet of Things Journal, 8(15), 12163–12175.CrossRef Liu, X., Wei, Yu., Liang, F., Griffith, D., & Golmie, N. (2021). Toward deep transfer learning in industrial Internet of Things. IEEE Internet of Things Journal, 8(15), 12163–12175.CrossRef
115.
go back to reference De Donno, M., Malarski, K. M., Fafoutis, X., Dragoni, N., Petersen, M. N., Berger, M. S., & Ruepp, S. (2019). Sustainable security for Internet of Things. In 2019 international conference on smart applications, communications and networking (SmartNets) (pp. 1–4). De Donno, M., Malarski, K. M., Fafoutis, X., Dragoni, N., Petersen, M. N., Berger, M. S., & Ruepp, S. (2019). Sustainable security for Internet of Things. In 2019 international conference on smart applications, communications and networking (SmartNets) (pp. 1–4).
Metadata
Title
Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challenges
Authors
Michaël Mahamat
Ghada Jaber
Abdelmadjid Bouabdallah
Publication date
01-11-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03170-y

Other articles of this Issue 2/2023

Wireless Networks 2/2023 Go to the issue