Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Acoustic Cavitation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Acoustic cavitation is the formation and subsequent violent collapse of bubbles in liquid irradiated with intense ultrasound. Ultrasound is radiated by a vibrating plate connected to ultrasonic transducers made of piezoelectric materials driven by electrical power. Microscopic mechanism for vibration of piezoelectric materials is briefly described. There are two types of ultrasonic experimental equipment used to generate acoustic cavitation: ultrasonic horn (or probe) and ultrasonic bath. Ultrasonic standing waves and traveling waves are discussed by means of mathematical equations. Acoustic impedance is discussed, and transmission and reflection coefficients are described. Various types of acoustic cavitations are discussed: transient and stable cavitations, vaporous and gaseous cavitations. Fluctuations in degassing and re-gassing cause repeated change between vaporous and gaseous cavitation. Light emission associated with violent bubble collapse as well as chemical reactions inside and outside a bubble is discussed in the sections entitled “sonoluminescence” and “sonochemistry,” respectively. Unsolved problems in sonoluminescence are briefly discussed. Reasons for lesser amount of produced H radicals (H·) than that of OH radicals (OH·) in sonochemical reactions are discussed based on results generated from numerical simulations. In the last section, ultrasonic cleaning, especially for the application to silicon wafers, is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Leighton TG (1994) The acoustic bubble. Academic Press, London Leighton TG (1994) The acoustic bubble. Academic Press, London
2.
go back to reference Fahy F (2001) Foundations of engineering acoustics. Academic Press, San Diego Fahy F (2001) Foundations of engineering acoustics. Academic Press, San Diego
3.
go back to reference Pierce AD (1989) Acoustics, an introduction to its physical principles and applications. Acoustical Society of America, New York Pierce AD (1989) Acoustics, an introduction to its physical principles and applications. Acoustical Society of America, New York
6.
go back to reference Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam
10.
go back to reference Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics, 3rd edn. Wiley, New York Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics, 3rd edn. Wiley, New York
11.
go back to reference Kremkau FW (2006) Diagnostic ultrasound: principles and instruments, 7th edn. Saunders Elsevier, St. Louis, Missouri Kremkau FW (2006) Diagnostic ultrasound: principles and instruments, 7th edn. Saunders Elsevier, St. Louis, Missouri
13.
go back to reference Wu J, Nyborg W (eds) (2006) Emerging therapeutic ultrasound. World Scientific, New Jersey Wu J, Nyborg W (eds) (2006) Emerging therapeutic ultrasound. World Scientific, New Jersey
14.
go back to reference Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York
15.
go back to reference Asakura Y (2015) Experimental methods in sonochemistry. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam Asakura Y (2015) Experimental methods in sonochemistry. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam
17.
go back to reference Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ Jr (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials Park, OH, USA Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ Jr (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials Park, OH, USA
18.
go back to reference Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem 109:4869–4872. doi:10.1021/jp0503516 CrossRef Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem 109:4869–4872. doi:10.​1021/​jp0503516 CrossRef
19.
go back to reference Yasui K (2011) Fundamentals of acoustic cavitation and sonochemistry. In: Pankaj Ashokkumar M (ed) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht Yasui K (2011) Fundamentals of acoustic cavitation and sonochemistry. In: Pankaj Ashokkumar M (ed) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht
20.
go back to reference Yasui K, Izu N (2017) Effect of evaporation and condensation on a thermoacoustic engine: a Lagrangian simulation approach. J Acoust Soc Am 141:4398–4407. doi:10.1121/1.4985385 CrossRef Yasui K, Izu N (2017) Effect of evaporation and condensation on a thermoacoustic engine: a Lagrangian simulation approach. J Acoust Soc Am 141:4398–4407. doi:10.​1121/​1.​4985385 CrossRef
21.
go back to reference Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New York Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New York
23.
go back to reference Yasui K (2016) Unsolved problems in acoustic cavitation. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore Yasui K (2016) Unsolved problems in acoustic cavitation. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore
28.
go back to reference Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705. doi:10.1063/1.2919119 CrossRef Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705. doi:10.​1063/​1.​2919119 CrossRef
29.
go back to reference Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527. doi:10.1121/1.420065 CrossRef Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527. doi:10.​1121/​1.​420065 CrossRef
30.
go back to reference Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitatsverlag Goettingen, Goettingen Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitatsverlag Goettingen, Goettingen
31.
go back to reference Mettin R, Cairos C (2016) Bubble dynamics and observations. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore Mettin R, Cairos C (2016) Bubble dynamics and observations. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore
32.
33.
go back to reference Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, India Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, India
36.
go back to reference Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405CrossRef Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405CrossRef
39.
go back to reference Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York
43.
47.
go back to reference Choi PK (2011) Sonoluminescence of inorganic ions in aqueous solutions. In: Pankaj, Ashokkumar M (eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht Choi PK (2011) Sonoluminescence of inorganic ions in aqueous solutions. In: Pankaj, Ashokkumar M (eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht
50.
52.
go back to reference Matsuoka M, Takahashi F, Asakura Y, Jin J (2016) Sonochemiluminescence of lucigenin: evidence of superoxide radical anion formation by ultrasonic irradiation. Jpn J Appl Phys 55: 07KB01. doi:10.7567/JJAP.55.07KB01 Matsuoka M, Takahashi F, Asakura Y, Jin J (2016) Sonochemiluminescence of lucigenin: evidence of superoxide radical anion formation by ultrasonic irradiation. Jpn J Appl Phys 55: 07KB01. doi:10.​7567/​JJAP.​55.​07KB01
53.
go back to reference Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) (2015) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) (2015) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam
54.
go back to reference Lide DR (ed) (1994) CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton Lide DR (ed) (1994) CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton
55.
go back to reference Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in sonochemsitry, vol 3. JAI Press, London Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in sonochemsitry, vol 3. JAI Press, London
56.
go back to reference Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547. doi:10.1039/ft9908601539 CrossRef Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547. doi:10.​1039/​ft9908601539 CrossRef
57.
go back to reference Mugnai A, Petroncelli P, Fiocco G (1979) Sensitivity of the photodissociation of NO2, NO3, HNO3 and H2O2 to the solar radiation diffused by the ground and by atmospheric particles. J Atmosph Terrest Phys 41:351–359. doi:10.1016/0021-9169(79)90031-X CrossRef Mugnai A, Petroncelli P, Fiocco G (1979) Sensitivity of the photodissociation of NO2, NO3, HNO3 and H2O2 to the solar radiation diffused by the ground and by atmospheric particles. J Atmosph Terrest Phys 41:351–359. doi:10.​1016/​0021-9169(79)90031-X CrossRef
58.
go back to reference Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. evidence for OH and H by spin trapping. J Am Chem Soc 104:3537–3539. doi:10.1021/ja00376a064 CrossRef Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. evidence for OH and H by spin trapping. J Am Chem Soc 104:3537–3539. doi:10.​1021/​ja00376a064 CrossRef
60.
go back to reference Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252. doi:10.2307/3430013 CrossRef Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252. doi:10.​2307/​3430013 CrossRef
61.
go back to reference Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377. doi:10.1021/j100231a020 CrossRef Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377. doi:10.​1021/​j100231a020 CrossRef
62.
63.
go back to reference Mark G, Tauber A, Laupert R, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52. doi:10.1016/S1350-4177(98)00012-1 CrossRef Mark G, Tauber A, Laupert R, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52. doi:10.​1016/​S1350-4177(98)00012-1 CrossRef
68.
go back to reference Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. JAO Press, Greenwich, Connecticut Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. JAO Press, Greenwich, Connecticut
69.
go back to reference Zhang Z, Sun DW, Zhu Z, Cheng L (2015) Enhancement of crystallization processes by power ultrasound: current state-of-the-art and research advances. Comprehensive Rev Food Sci Food Safety 14:303–316. doi:10.1111/1541-4337.12132 CrossRef Zhang Z, Sun DW, Zhu Z, Cheng L (2015) Enhancement of crystallization processes by power ultrasound: current state-of-the-art and research advances. Comprehensive Rev Food Sci Food Safety 14:303–316. doi:10.​1111/​1541-4337.​12132 CrossRef
70.
73.
go back to reference Yasui K, Kato K (2014) Numerical simulations of nucleation and aggregation of BaTiO3 nanocrystals under ultrasound. In: Manickam S, Ashokkumar M (eds) Cavitaion a novel energy-efficient technique for the generation of nanomaterials. Pan Stanford, Singapore Yasui K, Kato K (2014) Numerical simulations of nucleation and aggregation of BaTiO3 nanocrystals under ultrasound. In: Manickam S, Ashokkumar M (eds) Cavitaion a novel energy-efficient technique for the generation of nanomaterials. Pan Stanford, Singapore
75.
go back to reference Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of submicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607. doi:10.1149/1.2214531 CrossRef Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of submicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607. doi:10.​1149/​1.​2214531 CrossRef
76.
78.
go back to reference Iizuka A, Iwata W, Shimata E, Nakamura T (2016) Physical washing method for press oil removal from side surfaces using microbubbles under ultrasonic irradiation. Ind Eng Chem Res 55:10782–10787. doi:10.1021/acs.iecr.6b01887 CrossRef Iizuka A, Iwata W, Shimata E, Nakamura T (2016) Physical washing method for press oil removal from side surfaces using microbubbles under ultrasonic irradiation. Ind Eng Chem Res 55:10782–10787. doi:10.​1021/​acs.​iecr.​6b01887 CrossRef
79.
go back to reference Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982. doi:10.1121/1.3179677 CrossRef Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982. doi:10.​1121/​1.​3179677 CrossRef
80.
go back to reference Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K (2011) Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. J Acoust Soc Am 130:3233–3242. doi:10.1121/1.3626130 CrossRef Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K (2011) Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. J Acoust Soc Am 130:3233–3242. doi:10.​1121/​1.​3626130 CrossRef
Metadata
Title
Acoustic Cavitation
Author
Kyuichi Yasui
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-68237-2_1

Premium Partner