Skip to main content
Top
Published in: Journal of Electronic Materials 3/2024

07-01-2024 | Original Research Article

Activated Green Resources from Black Tiger Shrimp Shells to Produce O-N-P Self-Co-Doped Carbon Nanofiber for High-Performance Supercapacitor

Authors: Rakhmawati Farma, Indira Valensia, Irma Apriyani, Mohamad Deraman, Awitdrus, Erman Taer

Published in: Journal of Electronic Materials | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Internally or self-doped oxygen–nitrogen–phosphorus heteroatoms are useful in increasing the hydrophilicity, wettability, and conductivity of supercapacitor cell electrodes. These properties are positively related to electrochemical supercapacitive behavior. Therefore, this study aimed to examine activated green resources from black tiger shrimp shells (BTS) to produce O-N-P self-co-doped carbon (C) nanofibers for a high-performance supercapacitor. KOH was used to determine the content of heteroatoms in the carbon matrix. The results showed that the composition of BTS contained 10.01 wt% nitrogen, 40.92 wt% carbon, 23.16 wt% oxygen, and 4.92 wt% phosphorus, confirming the presence of O-N-P self-doping. Furthermore, the carbon matrix exhibited a nanofiber structure with the presence of nanopores (micro-mesopore co-extension), which showed the highest specific capacitance of 315 F/g at 1 mV/s in 1 M H2SO4 solution. BTS supercapacitor cells designed on a symmetrical electrode system achieved a specific power of 323 W/Kg at a specific energy of 9.59 Wh/Kg. These results indicated that internal heteroatoms doping was a strategy for improving the electrochemical performance of environmentally friendly, efficient, economical, and sustainable supercapacitor cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020).CrossRef J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 451, 227794 (2020).CrossRef
2.
go back to reference S. Rubio, T. Odoom-wubah, Q. Li, and G.F. Ortiz, Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. J. Clean. Prod. 359, 1 (2022).CrossRef S. Rubio, T. Odoom-wubah, Q. Li, and G.F. Ortiz, Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. J. Clean. Prod. 359, 1 (2022).CrossRef
3.
go back to reference G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).PubMedCrossRef G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).PubMedCrossRef
4.
go back to reference A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, H. Fan, and G. Wang, Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72 (2017).CrossRef A.K. Mondal, K. Kretschmer, Y. Zhao, H. Liu, H. Fan, and G. Wang, Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 246, 72 (2017).CrossRef
5.
go back to reference J. Zhou, L. Bao, S. Wu, W. Yang, and H. Wang, Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Carbohydr. Polym. 173, 321 (2017).PubMedCrossRef J. Zhou, L. Bao, S. Wu, W. Yang, and H. Wang, Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors. Carbohydr. Polym. 173, 321 (2017).PubMedCrossRef
6.
go back to reference C. Zequine, C.K. Ranaweera, Z. Wang, P.R. Dvornic, P.K. Kahol, S. Singh, P. Tripathi, O.N. Srivastava, S. Singh, B.K. Gupta, G. Gupta, and R.K. Gupta, High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci. Rep. 7, 1 (2017).CrossRef C. Zequine, C.K. Ranaweera, Z. Wang, P.R. Dvornic, P.K. Kahol, S. Singh, P. Tripathi, O.N. Srivastava, S. Singh, B.K. Gupta, G. Gupta, and R.K. Gupta, High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci. Rep. 7, 1 (2017).CrossRef
7.
go back to reference S. Lin, F. Wang, and Z. Shao, Biomass applied in supercapacitor energy storage devices. J. Mater. Sci. 56, 1943 (2021).CrossRefADS S. Lin, F. Wang, and Z. Shao, Biomass applied in supercapacitor energy storage devices. J. Mater. Sci. 56, 1943 (2021).CrossRefADS
8.
go back to reference N. Prakash, C. Santivarangkna, M. Singh, and S. Benjakul, Trends in food science & technology trends in shrimp processing waste utilization : an industrial prospective. Trends Food Sci. Technol. 103, 20 (2020).CrossRef N. Prakash, C. Santivarangkna, M. Singh, and S. Benjakul, Trends in food science & technology trends in shrimp processing waste utilization : an industrial prospective. Trends Food Sci. Technol. 103, 20 (2020).CrossRef
9.
go back to reference Y. Zhou, N. Guo, Z. Wang, T. Zhao, J. Sun, and X. Mao, Evaluation of a clean fermentation-organic acid method for processing shrimp waste from six major cultivated shrimp species in China. J. Clean. Prod. 294, 126135 (2021).CrossRef Y. Zhou, N. Guo, Z. Wang, T. Zhao, J. Sun, and X. Mao, Evaluation of a clean fermentation-organic acid method for processing shrimp waste from six major cultivated shrimp species in China. J. Clean. Prod. 294, 126135 (2021).CrossRef
10.
go back to reference J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, and M. Wu, Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 176, 982 (2015).CrossRef J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, and M. Wu, Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim. Acta 176, 982 (2015).CrossRef
11.
go back to reference Y. Li, Y. Sun, H. Li, M. Sun, J. Shen, and S. Wang, High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from eriocheir sinensis for advanced supercapacitors. Energy 270, 126942 (2023).CrossRef Y. Li, Y. Sun, H. Li, M. Sun, J. Shen, and S. Wang, High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from eriocheir sinensis for advanced supercapacitors. Energy 270, 126942 (2023).CrossRef
12.
go back to reference B. Qiu, X. Wei, W. Zhang, Y. Lv, H. Meng, and F. Wei, Shrimp shell-derived N, O-doped honeycomb-carbon for high-performance supercapacitor. Diam. Relat. Mater. 136, 110041 (2023).CrossRefADS B. Qiu, X. Wei, W. Zhang, Y. Lv, H. Meng, and F. Wei, Shrimp shell-derived N, O-doped honeycomb-carbon for high-performance supercapacitor. Diam. Relat. Mater. 136, 110041 (2023).CrossRefADS
13.
go back to reference M. Pakizeh, A. Moradi, and T. Ghassemi, Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polym. J. 159, 110709 (2021).CrossRef M. Pakizeh, A. Moradi, and T. Ghassemi, Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polym. J. 159, 110709 (2021).CrossRef
14.
go back to reference J. Liu, F.O. Dunne, X. Fan, X. Fu, and W.H. Zhong, A protein-functionalized microfiber/protein nanofiber bi-layered air filter with synergistically enhanced filtration performance by a viable method. Sep. Purif. Technol. 229, 115837 (2019).CrossRef J. Liu, F.O. Dunne, X. Fan, X. Fu, and W.H. Zhong, A protein-functionalized microfiber/protein nanofiber bi-layered air filter with synergistically enhanced filtration performance by a viable method. Sep. Purif. Technol. 229, 115837 (2019).CrossRef
15.
go back to reference X. Yang, J. Liu, Y. Pei, X. Zheng, and K. Tang, Recent progress in preparation and application of nano-chitin materials. Energy Environ. Mater. 3, 492 (2020).CrossRef X. Yang, J. Liu, Y. Pei, X. Zheng, and K. Tang, Recent progress in preparation and application of nano-chitin materials. Energy Environ. Mater. 3, 492 (2020).CrossRef
16.
go back to reference W. Chen, H. Wang, W. Lan, D. Li, A. Zhang, and C. Liu, Construction of sugarcane bagasse-derived porous and flexible carbon nanofibers by electrospinning for supercapacitors. Ind. Crops Prod. 170, 113700 (2021).CrossRef W. Chen, H. Wang, W. Lan, D. Li, A. Zhang, and C. Liu, Construction of sugarcane bagasse-derived porous and flexible carbon nanofibers by electrospinning for supercapacitors. Ind. Crops Prod. 170, 113700 (2021).CrossRef
17.
go back to reference S.A. Beknalkar, A.M. Teli, N.S. Harale, D.S. Patil, S.A. Pawar, J.C. Shin, and P.S. Patil, Fabrication of high energy density supercapacitor device based on hollow iridium oxide nanofibers by single nozzle electrospinning. Appl. Surf. Sci. 546, 149102 (2021).CrossRef S.A. Beknalkar, A.M. Teli, N.S. Harale, D.S. Patil, S.A. Pawar, J.C. Shin, and P.S. Patil, Fabrication of high energy density supercapacitor device based on hollow iridium oxide nanofibers by single nozzle electrospinning. Appl. Surf. Sci. 546, 149102 (2021).CrossRef
18.
go back to reference T. Liu, F. Zhang, Y. Song, and Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).CrossRef T. Liu, F. Zhang, Y. Song, and Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).CrossRef
19.
go back to reference H. Xu, Y. Zhang, L. Wang, Y. Chen, and S. Gao, Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew. Energy 179, 1826 (2021).CrossRef H. Xu, Y. Zhang, L. Wang, Y. Chen, and S. Gao, Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renew. Energy 179, 1826 (2021).CrossRef
20.
go back to reference X. Wei, B. Qiu, L. Xu, Q. Qin, W. Zhang, Z. Liu, F. Wei, and Y. Lv, High performance hierarchical porous carbon derived from waste shrimp shell for supercapacitor electrodes. J. Energy Storage 62, 1 (2023).CrossRef X. Wei, B. Qiu, L. Xu, Q. Qin, W. Zhang, Z. Liu, F. Wei, and Y. Lv, High performance hierarchical porous carbon derived from waste shrimp shell for supercapacitor electrodes. J. Energy Storage 62, 1 (2023).CrossRef
21.
go back to reference R. Farma, N.A. Nur’aini, I. Apriyani, A. Awitdrus, E. Taer, and A. Apriwandi, Honeycomb-like carbon with tunable pore size from biomass phoenix dactylifera midrib for highly compressible binder-free supercapacitors. JOM 75, 708 (2023).CrossRefADS R. Farma, N.A. Nur’aini, I. Apriyani, A. Awitdrus, E. Taer, and A. Apriwandi, Honeycomb-like carbon with tunable pore size from biomass phoenix dactylifera midrib for highly compressible binder-free supercapacitors. JOM 75, 708 (2023).CrossRefADS
22.
go back to reference R. Farma, A. Indriani, and I. Apriyani, Hierarchical-nanofiber structure of biomass-derived carbon framework with direct CO2 activation for symmetrical supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 34, 81 (2023).CrossRef R. Farma, A. Indriani, and I. Apriyani, Hierarchical-nanofiber structure of biomass-derived carbon framework with direct CO2 activation for symmetrical supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 34, 81 (2023).CrossRef
23.
go back to reference H. Moussout, Y. Dehmani, D.S.P. Franco, J. Georgin, I. Daou, T. Lamhasni, C. Ilyas, H. Ahlafi, M. Taky, A. Shaim, and A. Sadik, Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J. Mol. Liq. 383, 122106 (2023).CrossRef H. Moussout, Y. Dehmani, D.S.P. Franco, J. Georgin, I. Daou, T. Lamhasni, C. Ilyas, H. Ahlafi, M. Taky, A. Shaim, and A. Sadik, Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer. J. Mol. Liq. 383, 122106 (2023).CrossRef
24.
go back to reference W. Tian, P. Ren, X. Hou, Z. Guo, and R. Xue, Industrial crops & products biomass derived N/O self-doped porous carbon for advanced supercapacitor electrodes. Ind. Crop Prod. 202, 117032 (2023).CrossRef W. Tian, P. Ren, X. Hou, Z. Guo, and R. Xue, Industrial crops & products biomass derived N/O self-doped porous carbon for advanced supercapacitor electrodes. Ind. Crop Prod. 202, 117032 (2023).CrossRef
25.
go back to reference R. Farma, H. Putri, and I. Apriyani, KOH-assisted synthesis of oxygen-rich activated carbon derived from biomass sugar palm midrib as performance electrode cell supercapacitor. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 4886 (2023). R. Farma, H. Putri, and I. Apriyani, KOH-assisted synthesis of oxygen-rich activated carbon derived from biomass sugar palm midrib as performance electrode cell supercapacitor. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 4886 (2023).
26.
go back to reference D. Qu, Studies of the activated mesocarbon microbeads used in double-layer supercapacitors. J. Power Sources 109, 403 (2002).CrossRefADS D. Qu, Studies of the activated mesocarbon microbeads used in double-layer supercapacitors. J. Power Sources 109, 403 (2002).CrossRefADS
27.
go back to reference M. Fu, W. Chen, X. Zhu, B. Yang, and Q. Liu, Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon NY 141, 748 (2019).CrossRef M. Fu, W. Chen, X. Zhu, B. Yang, and Q. Liu, Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon NY 141, 748 (2019).CrossRef
28.
go back to reference R. Farma, R.I. Julita, I. Apriyani, A. Awitdrus, and E. Taer, ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors. Mater. Today Proc. 87, 25 (2023).CrossRef R. Farma, R.I. Julita, I. Apriyani, A. Awitdrus, and E. Taer, ZnCl2-assisted synthesis of coffee bean bagasse-based activated carbon as a stable material for high-performance supercapacitors. Mater. Today Proc. 87, 25 (2023).CrossRef
29.
go back to reference J. Tu, Z. Qiao, Y. Wang, G. Li, X. Zhang, G. Li, and D. Ruan, American ginseng biowaste-derived activated carbon for high-performance supercapacitors. Int. J. Electrochem. Sci. 18, 16 (2023).CrossRef J. Tu, Z. Qiao, Y. Wang, G. Li, X. Zhang, G. Li, and D. Ruan, American ginseng biowaste-derived activated carbon for high-performance supercapacitors. Int. J. Electrochem. Sci. 18, 16 (2023).CrossRef
30.
go back to reference X. Song, X. Ma, Y. Li, L. Ding, and R. Jiang, Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci. 487, 189 (2019).CrossRefADS X. Song, X. Ma, Y. Li, L. Ding, and R. Jiang, Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors. Appl. Surf. Sci. 487, 189 (2019).CrossRefADS
31.
go back to reference Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, L. Kang, Z. Liu, and F. Ran, Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 378, 499 (2018).CrossRefADS Z. Wang, Y. Tan, Y. Yang, X. Zhao, Y. Liu, L. Niu, B. Tichnell, L. Kong, L. Kang, Z. Liu, and F. Ran, Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Sources 378, 499 (2018).CrossRefADS
32.
go back to reference E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, and P.M. Johnson, Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Appl. Surf. Sci. 486, 527 (2019).CrossRefADS E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, and P.M. Johnson, Low cost activated carbon derived from Cucumis melo fruit peel for electrochemical supercapacitor application. Appl. Surf. Sci. 486, 527 (2019).CrossRefADS
33.
go back to reference R. Farma, A.P. Anugrah, I. Apriyani, and A. Awitdrus, Facile synthesis of Veitchia merilli coir-based porous carbon using combined chemical and physical activation routes as electrode material for energy storage. Adv. Nat. Sci. Nanosci. Nanotechnol. 13, 015009 (2022).CrossRefADS R. Farma, A.P. Anugrah, I. Apriyani, and A. Awitdrus, Facile synthesis of Veitchia merilli coir-based porous carbon using combined chemical and physical activation routes as electrode material for energy storage. Adv. Nat. Sci. Nanosci. Nanotechnol. 13, 015009 (2022).CrossRefADS
34.
go back to reference R. Farma, I. Apriyani, M. Deraman, E. Taer, R. Nanda, and A. Sulistyo, Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans-based carbon nanofiber for high performance supercapacitors. J. Energy Storage 67, 107611 (2023).CrossRef R. Farma, I. Apriyani, M. Deraman, E. Taer, R. Nanda, and A. Sulistyo, Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans-based carbon nanofiber for high performance supercapacitors. J. Energy Storage 67, 107611 (2023).CrossRef
35.
go back to reference F. Zeng, Z. Meng, Z. Xu, J. Xu, W. Shi, H. Wang, X. Hu, and H. Tian, Biomass-derived porous activated carbon for ultra-high performance supercapacitor applications and high flux removal of pollutants from water. Ceram. Int. 49, 15377 (2023).CrossRef F. Zeng, Z. Meng, Z. Xu, J. Xu, W. Shi, H. Wang, X. Hu, and H. Tian, Biomass-derived porous activated carbon for ultra-high performance supercapacitor applications and high flux removal of pollutants from water. Ceram. Int. 49, 15377 (2023).CrossRef
36.
go back to reference D. Chinnadurai, H.J. Kim, S. Karupannan, and K. Prabakar, Multiscale honeycomb-structured activated carbon obtained from nitrogen-containing mandarin peel: high-performance supercapacitors with significant cycling stability. New J. Chem. 43, 3486 (2019).CrossRef D. Chinnadurai, H.J. Kim, S. Karupannan, and K. Prabakar, Multiscale honeycomb-structured activated carbon obtained from nitrogen-containing mandarin peel: high-performance supercapacitors with significant cycling stability. New J. Chem. 43, 3486 (2019).CrossRef
37.
go back to reference R. Vinodh, Y. Sasikumar, H.J. Kim, R. Atchudan, and M. Yi, Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: a critical review. J. Ind. Eng. Chem. 104, 155 (2021).CrossRef R. Vinodh, Y. Sasikumar, H.J. Kim, R. Atchudan, and M. Yi, Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: a critical review. J. Ind. Eng. Chem. 104, 155 (2021).CrossRef
38.
go back to reference B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, and L. Zhang, Nano energy unique elastic N-doped carbon nano fi brous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482 (2016).CrossRef B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, and L. Zhang, Nano energy unique elastic N-doped carbon nano fi brous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27, 482 (2016).CrossRef
39.
go back to reference C.J. Raj, M. Rajesh, R. Manikandan, K. Hyun, J.R. Anusha, J. Hwan, D. Kim, S. Yeup, and B. Chul, High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J. Power Sources 386, 66 (2018).CrossRefADS C.J. Raj, M. Rajesh, R. Manikandan, K. Hyun, J.R. Anusha, J. Hwan, D. Kim, S. Yeup, and B. Chul, High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin. J. Power Sources 386, 66 (2018).CrossRefADS
40.
go back to reference Z. Shang, X. An, L. Liu, J. Yang, W. Zhang, and H. Dai, Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydr. Polym. 251, 117107 (2021).PubMedCrossRef Z. Shang, X. An, L. Liu, J. Yang, W. Zhang, and H. Dai, Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydr. Polym. 251, 117107 (2021).PubMedCrossRef
41.
go back to reference S. Huang, Y. Ding, Y. Li, X. Han, B. Xing, and S. Wang, Nitrogen and sulfur co-doped hierarchical porous biochar derived from the pyrolysis of mantis shrimp shell for supercapacitor electrodes. Energy Fuels 35, 1557 (2021).CrossRef S. Huang, Y. Ding, Y. Li, X. Han, B. Xing, and S. Wang, Nitrogen and sulfur co-doped hierarchical porous biochar derived from the pyrolysis of mantis shrimp shell for supercapacitor electrodes. Energy Fuels 35, 1557 (2021).CrossRef
Metadata
Title
Activated Green Resources from Black Tiger Shrimp Shells to Produce O-N-P Self-Co-Doped Carbon Nanofiber for High-Performance Supercapacitor
Authors
Rakhmawati Farma
Indira Valensia
Irma Apriyani
Mohamad Deraman
Awitdrus
Erman Taer
Publication date
07-01-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 3/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10880-2

Other articles of this Issue 3/2024

Journal of Electronic Materials 3/2024 Go to the issue

Topical Collection: Electronic Packaging and Interconnections 2023

The Interfacial Reaction of Ni/In/Ni Sandwich Structure During Solid-State Isothermal Aging