Skip to main content
Top
Published in: The Journal of Supercomputing 2/2024

14-08-2023

Active learning-based hyperspectral image classification: a reinforcement learning approach

Authors: Usha Patel, Vibha Patel

Published in: The Journal of Supercomputing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last few years, deep neural networks have been successful in classifying hyperspectral images (HSIs). However, training deep neural networks needs a large number of labeled datasets. In HSIs, acquiring a large amount of labeled data is costly and time-consuming. Active learning (AL) is a technique for selecting a small subset of data for annotation so that the classifier can learn from the data with high accuracy. Most of the AL methods are designed based on some statistical approach. The efficacy of the statistical methods is limited, and their performance varies depending on the scenario. So, a reinforced pool-based deep active learning (RPDAL) approach is proposed to overcome limitations of statistical selection approaches. The reinforcement learning (RL)-based agent is designed and trained to select informative samples for annotation. The learned RL-based agent can transfer and choose samples for annotation on any other HSI dataset after being trained on one. Indian Pines (IP), Pavia University (PV), and Salinas Valley (SL) are three publicly available datasets used in the experiment. The proposed approach achieves 92.78%, 97.85%, and 97.94% accuracy using 400 labeled samples with IP, PV, and SL datasets, respectively. The labeled samples selected using the proposed approach achieve better classification performance than other AL techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ghasrodashti EK, Sharma N (2021) Hyperspectral image classification using an extended auto-encoder method. Signal Process Image Commun 92:116111CrossRef Ghasrodashti EK, Sharma N (2021) Hyperspectral image classification using an extended auto-encoder method. Signal Process Image Commun 92:116111CrossRef
2.
go back to reference Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655CrossRef Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655CrossRef
4.
go back to reference Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251CrossRef Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251CrossRef
5.
go back to reference Patel U, Dave H, Patel V (2020) Hyperspectral image classification using semi-supervised learning with label propagation. In: 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS). IEEE, pp 205–208 Patel U, Dave H, Patel V (2020) Hyperspectral image classification using semi-supervised learning with label propagation. In: 2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS). IEEE, pp 205–208
6.
go back to reference He X, Chen Y, Ghamisi P (2019) Heterogeneous transfer learning for hyperspectral image classification based on convolutional neural network. IEEE Trans Geosci Remote Sens 58(5):3246–3263CrossRef He X, Chen Y, Ghamisi P (2019) Heterogeneous transfer learning for hyperspectral image classification based on convolutional neural network. IEEE Trans Geosci Remote Sens 58(5):3246–3263CrossRef
7.
go back to reference Qu Y, Baghbaderani RK, Qi H (2019) Few-shot hyperspectral image classification through multitask transfer learning. In: 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, pp 1–5 Qu Y, Baghbaderani RK, Qi H (2019) Few-shot hyperspectral image classification through multitask transfer learning. In: 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, pp 1–5
8.
go back to reference Jia S, Jiang S, Lin Z, Li N, Xu M, Yu S (2021) A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448:179–204CrossRef Jia S, Jiang S, Lin Z, Li N, Xu M, Yu S (2021) A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448:179–204CrossRef
9.
go back to reference Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Gupta BB, Chen X, Wang X (2021) A survey of deep active learning. ACM Comput Surv (CSUR) 54(9):1–40CrossRef Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Gupta BB, Chen X, Wang X (2021) A survey of deep active learning. ACM Comput Surv (CSUR) 54(9):1–40CrossRef
10.
go back to reference Cao X, Yao J, Xu Z, Meng D (2020) Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens 58(7):4604–4616CrossRef Cao X, Yao J, Xu Z, Meng D (2020) Hyperspectral image classification with convolutional neural network and active learning. IEEE Trans Geosci Remote Sens 58(7):4604–4616CrossRef
12.
go back to reference Patel U, Dave H, Patel V (2021) Hyperspectral image classification using uncertainty and diversity based active learning. Scalable Comput Pract Exp 22(3):283–293CrossRef Patel U, Dave H, Patel V (2021) Hyperspectral image classification using uncertainty and diversity based active learning. Scalable Comput Pract Exp 22(3):283–293CrossRef
13.
go back to reference Ahn KU, Park CS (2020) Application of deep Q-networks for model-free optimal control balancing between different HVAC systems. Sci Technol Built Environ 26(1):61–74CrossRef Ahn KU, Park CS (2020) Application of deep Q-networks for model-free optimal control balancing between different HVAC systems. Sci Technol Built Environ 26(1):61–74CrossRef
14.
go back to reference Song L, Fan W (2021) Traffic signal control under mixed traffic with connected and automated vehicles: a transfer-based deep reinforcement learning approach. IEEE Access 9:145228–145237CrossRef Song L, Fan W (2021) Traffic signal control under mixed traffic with connected and automated vehicles: a transfer-based deep reinforcement learning approach. IEEE Access 9:145228–145237CrossRef
15.
go back to reference Altuner AB, Kilimci ZH (2021) A novel deep reinforcement learning based stock direction prediction using knowledge graph and community aware sentiments. arXiv preprint arXiv:2107.00931 Altuner AB, Kilimci ZH (2021) A novel deep reinforcement learning based stock direction prediction using knowledge graph and community aware sentiments. arXiv preprint arXiv:​2107.​00931
16.
go back to reference Kumari A, Tanwar S (2021) A reinforcement learning-based secure demand response scheme for smart grid system. IEEE Internet Things J 9:2180–2191CrossRef Kumari A, Tanwar S (2021) A reinforcement learning-based secure demand response scheme for smart grid system. IEEE Internet Things J 9:2180–2191CrossRef
17.
go back to reference Liang W, Huang W, Long J, Zhang K, Li K-C, Zhang D (2020) Deep reinforcement learning for resource protection and real-time detection in IoT environment. IEEE Internet Things J 7(7):6392–6401CrossRef Liang W, Huang W, Long J, Zhang K, Li K-C, Zhang D (2020) Deep reinforcement learning for resource protection and real-time detection in IoT environment. IEEE Internet Things J 7(7):6392–6401CrossRef
18.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRef
19.
20.
go back to reference Sun L, Gong Y (2019) Active learning for image classification: a deep reinforcement learning approach. In: 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI). IEEE, pp 71–76 Sun L, Gong Y (2019) Active learning for image classification: a deep reinforcement learning approach. In: 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI). IEEE, pp 71–76
21.
22.
go back to reference Vu T, Liu M, Phung D, Haffari G (2019) Learning how to active learn by dreaming. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 4091–4101 Vu T, Liu M, Phung D, Haffari G (2019) Learning how to active learn by dreaming. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 4091–4101
23.
go back to reference Liu Z, Wang J, Gong S, Lu H, Tao D (2019) Deep reinforcement active learning for human-in-the-loop person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 6122–6131 Liu Z, Wang J, Gong S, Lu H, Tao D (2019) Deep reinforcement active learning for human-in-the-loop person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 6122–6131
24.
go back to reference Rudovic O, Zhang M, Schuller B, Picard R (2019) Multi-modal active learning from human data: a deep reinforcement learning approach. In: 2019 International Conference on Multimodal Interaction, pp 6–15 Rudovic O, Zhang M, Schuller B, Picard R (2019) Multi-modal active learning from human data: a deep reinforcement learning approach. In: 2019 International Conference on Multimodal Interaction, pp 6–15
25.
go back to reference Rudovic O, Park HW, Busche J, Schuller B, Breazeal C, Picard RW (2019) Personalized estimation of engagement from videos using active learning with deep reinforcement learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp 217–226 Rudovic O, Park HW, Busche J, Schuller B, Breazeal C, Picard RW (2019) Personalized estimation of engagement from videos using active learning with deep reinforcement learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp 217–226
26.
go back to reference Casanova A, Pinheiro PO, Rostamzadeh N, Pal CJ (2020) Reinforced active learning for image segmentation. arXiv preprint arXiv:2002.06583 Casanova A, Pinheiro PO, Rostamzadeh N, Pal CJ (2020) Reinforced active learning for image segmentation. arXiv preprint arXiv:​2002.​06583
27.
go back to reference Taguchi Y, Hino H, Kameyama K (2021) Pre-training acquisition functions by deep reinforcement learning for fixed budget active learning. Neural Process Lett 53(3):1945–1962CrossRef Taguchi Y, Hino H, Kameyama K (2021) Pre-training acquisition functions by deep reinforcement learning for fixed budget active learning. Neural Process Lett 53(3):1945–1962CrossRef
28.
29.
go back to reference Hsu W-N, Lin H-T (2015) Active learning by learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence Hsu W-N, Lin H-T (2015) Active learning by learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence
31.
go back to reference Huang H, Feng Y, Huang J, Zhang J, Chen L (2019) A reinforcement one-shot active learning approach for aircraft type recognition. IEEE Access 7:147204–147214CrossRef Huang H, Feng Y, Huang J, Zhang J, Chen L (2019) A reinforcement one-shot active learning approach for aircraft type recognition. IEEE Access 7:147204–147214CrossRef
32.
go back to reference Mou L, Saha S, Hua Y, Bovolo F, Bruzzone L, Zhu XX (2021) Deep reinforcement learning for band selection in hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–14 Mou L, Saha S, Hua Y, Bovolo F, Bruzzone L, Zhu XX (2021) Deep reinforcement learning for band selection in hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–14
33.
go back to reference Feng J, Li D, Gu J, Cao X, Shang R, Zhang X, Jiao L (2021) Deep reinforcement learning for semisupervised hyperspectral band selection. IEEE Trans Geosci Remote Sens 60:1–19 Feng J, Li D, Gu J, Cao X, Shang R, Zhang X, Jiao L (2021) Deep reinforcement learning for semisupervised hyperspectral band selection. IEEE Trans Geosci Remote Sens 60:1–19
34.
go back to reference Wang Z, Zhang K, Zhang J, Chen G, Ma X, Xin G, Kang J, Zhao H, Yang Y (2022) Deep reinforcement learning and adaptive policy transfer for generalizable well control optimization. J Petrol Sci Eng 217:110868CrossRef Wang Z, Zhang K, Zhang J, Chen G, Ma X, Xin G, Kang J, Zhao H, Yang Y (2022) Deep reinforcement learning and adaptive policy transfer for generalizable well control optimization. J Petrol Sci Eng 217:110868CrossRef
35.
go back to reference Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2020) Hybridsn: exploring 3D–2D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17:277–281CrossRef Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2020) Hybridsn: exploring 3D–2D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17:277–281CrossRef
Metadata
Title
Active learning-based hyperspectral image classification: a reinforcement learning approach
Authors
Usha Patel
Vibha Patel
Publication date
14-08-2023
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 2/2024
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-023-05568-7

Other articles of this Issue 2/2024

The Journal of Supercomputing 2/2024 Go to the issue

Premium Partner