Skip to main content
Top
Published in: Flow, Turbulence and Combustion 4/2019

04-01-2019

Actively Reduced Airfoil Drag by Transversal Surface Waves

Authors: Marian Albers, Pascal S. Meysonnat, Wolfgang Schröder

Published in: Flow, Turbulence and Combustion | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flow over a DRA2303 wing section at a Reynolds number of Re = 400,000 is actively controlled by spanwise traveling transversal surface waves. The actuated low-Mach number flow is investigated by a high-resolution large-eddy simulation. Approximately 74% of the solid surface on both sides of the wing section is deflected by a sinusoidal space- and time-dependent function in the wall-normal direction. The turbulence intensitites and wall-normal vorticity fluctuations are significantly reduced and a shift from one-dimensional turbulence to two-dimensional turbulence is observed. Besides a viscous drag reduction by 8.6% with a strong decrease of skin-friction in the favorable pressure gradient region and an overall drag decrease by 7.5%, a slight increase in lift is achieved for an external flow over a realistic geometry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Walsh, M., Weinstein, L.: Drag and heat transfer on surfaces with small longitudinal fins. In: 11Th Fluid and Plasma Dynamics Conference, p. 1161 (1978) Walsh, M., Weinstein, L.: Drag and heat transfer on surfaces with small longitudinal fins. In: 11Th Fluid and Plasma Dynamics Conference, p. 1161 (1978)
2.
go back to reference Bechert, D.W., Hoppe, G., Reif, W.E.: On the drag reduction of the shark skin. AIAA Paper No., 85–0546 (1985) Bechert, D.W., Hoppe, G., Reif, W.E.: On the drag reduction of the shark skin. AIAA Paper No., 85–0546 (1985)
4.
go back to reference García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)MATHCrossRef García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)MATHCrossRef
5.
go back to reference Szodruch, J.: Viscous drag reduction on transport aircraft. AIAA Paper No., 91–0685 (1991) Szodruch, J.: Viscous drag reduction on transport aircraft. AIAA Paper No., 91–0685 (1991)
6.
go back to reference Reneaux, J.: Overview on drag reduction technologies for civil transport aircraft. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004) Reneaux, J.: Overview on drag reduction technologies for civil transport aircraft. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)
7.
go back to reference Choi, K., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. London, Ser. A 453(1965), 2229–2240 (1997)MATHCrossRef Choi, K., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. London, Ser. A 453(1965), 2229–2240 (1997)MATHCrossRef
8.
go back to reference Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRef
9.
go back to reference Luhar, M., Sharma, A., McKeon, B.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef Luhar, M., Sharma, A., McKeon, B.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRef
10.
go back to reference Zhang, C., Wang, J., Blake, W., Katz, J.: Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345–390 (2017)MathSciNetCrossRef Zhang, C., Wang, J., Blake, W., Katz, J.: Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345–390 (2017)MathSciNetCrossRef
11.
go back to reference Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42(1), 183–203 (2010)CrossRef Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42(1), 183–203 (2010)CrossRef
12.
go back to reference Perlin, M., Dowling, D.R., Ceccio, S.L.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138(9), 091104–091104–16 (2016)CrossRef Perlin, M., Dowling, D.R., Ceccio, S.L.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138(9), 091104–091104–16 (2016)CrossRef
13.
go back to reference Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., Ceccio, S.L.: Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560–580 (2018)MathSciNetMATHCrossRef Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., Ceccio, S.L.: Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560–580 (2018)MathSciNetMATHCrossRef
14.
go back to reference Alfredsson, P.H., Örlü, R.: Large-eddy breakup devices – a 40 years perspective from a Stockholm horizon. Flow Turbul. Combust. 100(4), 877–888 (2018)CrossRef Alfredsson, P.H., Örlü, R.: Large-eddy breakup devices – a 40 years perspective from a Stockholm horizon. Flow Turbul. Combust. 100(4), 877–888 (2018)CrossRef
15.
go back to reference Bechert, D., Meyer, R., Hage, W.: Drag reduction of airfoils with miniflaps - can we learn from dragonflies?. AIAA Paper No., 2000–2315 (2000) Bechert, D., Meyer, R., Hage, W.: Drag reduction of airfoils with miniflaps - can we learn from dragonflies?. AIAA Paper No., 2000–2315 (2000)
16.
go back to reference Moin, P., Shih, T., Driver, D., Mansour, N.N.: Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids A 2(10), 1846–1853 (1990)CrossRef Moin, P., Shih, T., Driver, D., Mansour, N.N.: Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids A 2(10), 1846–1853 (1990)CrossRef
17.
go back to reference Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRef
18.
go back to reference Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1428–1442 (2011)CrossRef Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1428–1442 (2011)CrossRef
19.
go back to reference Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161 (2009)MathSciNetMATHCrossRef Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161 (2009)MathSciNetMATHCrossRef
20.
go back to reference Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)CrossRef Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)CrossRef
21.
go back to reference Bai, H., Zhou, Y., Zhang, W., Xu, S., Wang, Y., Antonia, R.: Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316 (2014)CrossRef Bai, H., Zhou, Y., Zhang, W., Xu, S., Wang, Y., Antonia, R.: Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316 (2014)CrossRef
22.
go back to reference Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)CrossRef Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)CrossRef
23.
go back to reference Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)MathSciNetMATHCrossRef Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)MathSciNetMATHCrossRef
24.
go back to reference Zhao, H., Wu, J.Z., Luo, J.S.: Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34(3), 175–198 (2004)MATHCrossRef Zhao, H., Wu, J.Z., Luo, J.S.: Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34(3), 175–198 (2004)MATHCrossRef
25.
go back to reference Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27 (2006)CrossRef Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27 (2006)CrossRef
26.
go back to reference Tamano, S., Itoh, M.: Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)CrossRef Tamano, S., Itoh, M.: Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)CrossRef
27.
go back to reference Klumpp, S., Meinke, M., Schröder, W.: Drag reduction by spanwise transversal surface waves. J. Turbul. 11, N22 (2010b)CrossRef Klumpp, S., Meinke, M., Schröder, W.: Drag reduction by spanwise transversal surface waves. J. Turbul. 11, N22 (2010b)CrossRef
28.
go back to reference Koh, S., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)MathSciNetMATHCrossRef Koh, S., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)MathSciNetMATHCrossRef
29.
go back to reference Meysonnat, P.S., Koh, S.R., Roidl, B., Schröder, W.: Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl. Math. Comput. 272, 498–507 (2016)MathSciNetMATH Meysonnat, P.S., Koh, S.R., Roidl, B., Schröder, W.: Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl. Math. Comput. 272, 498–507 (2016)MathSciNetMATH
30.
go back to reference Albers, M., Meysonnat, P.S., Schröder, W.: Drag reduction via transversal wave motions of structured surfaces. In: Int. Symp. Turbulence & Shear Flow Phenomena (TSFP-10) (2017) Albers, M., Meysonnat, P.S., Schröder, W.: Drag reduction via transversal wave motions of structured surfaces. In: Int. Symp. Turbulence & Shear Flow Phenomena (TSFP-10) (2017)
31.
go back to reference Liu, P.Q., Duan, H.S., Chen, J.Z., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47(1), 229–239 (2010)CrossRef Liu, P.Q., Duan, H.S., Chen, J.Z., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47(1), 229–239 (2010)CrossRef
32.
go back to reference Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)CrossRef Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)CrossRef
33.
go back to reference Vinuesa, R., Schlatter, P.: Skin-friction control of the flow around a wing section through uniform blowing. In: European Drag Reduction and Flow Control Meeting (EDRFCM 2017) (2017) Vinuesa, R., Schlatter, P.: Skin-friction control of the flow around a wing section through uniform blowing. In: European Drag Reduction and Flow Control Meeting (EDRFCM 2017) (2017)
34.
go back to reference Atzori, M., Vinuesa, R., Stroh, A., Frohnapfel, B., Schlatter, P.: Assessment of skin-friction-reduction techniques on a turbulent wing section. In: 12Th ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements (ETMM12) (2018) Atzori, M., Vinuesa, R., Stroh, A., Frohnapfel, B., Schlatter, P.: Assessment of skin-friction-reduction techniques on a turbulent wing section. In: 12Th ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements (ETMM12) (2018)
35.
go back to reference Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)MATHCrossRef Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)MATHCrossRef
36.
go back to reference Henke, R.: A320 HLF Fin flight tests completed. Air Space Eur. 1(2), 76–79 (1999)CrossRef Henke, R.: A320 HLF Fin flight tests completed. Air Space Eur. 1(2), 76–79 (1999)CrossRef
37.
go back to reference Spalart, P.R., McLean, J.D.: Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1556–1569 (2011)CrossRef Spalart, P.R., McLean, J.D.: Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1556–1569 (2011)CrossRef
39.
go back to reference Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4), 695–718 (2002)MATHCrossRef Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4), 695–718 (2002)MATHCrossRef
40.
go back to reference Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)CrossRef Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)CrossRef
41.
go back to reference Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135(2), 203–216 (1997)MATHCrossRef Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135(2), 203–216 (1997)MATHCrossRef
42.
go back to reference Roidl, B., Meinke, M., Schröder, W.: Zonal RANS-LES computation of transonic airfoil flow. AIAA Paper No., 2011–3974 (2011) Roidl, B., Meinke, M., Schröder, W.: Zonal RANS-LES computation of transonic airfoil flow. AIAA Paper No., 2011–3974 (2011)
43.
go back to reference Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010a)MATHCrossRef Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010a)MATHCrossRef
44.
go back to reference Meysonnat, P.S., Roggenkamp, D., Li, W., Roidl, B., Schröder, W.: Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. B. Fluids 55, 313–323 (2016)MathSciNetMATHCrossRef Meysonnat, P.S., Roggenkamp, D., Li, W., Roidl, B., Schröder, W.: Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. B. Fluids 55, 313–323 (2016)MathSciNetMATHCrossRef
45.
go back to reference Feldhusen-Hoffmann, A., Statnikov, V., Klaas, M., Schröder, W.: Investigation of shock–acoustic-wave interaction in transonic flow. Exp. Fluids 59(1), 15 (2017)CrossRef Feldhusen-Hoffmann, A., Statnikov, V., Klaas, M., Schröder, W.: Investigation of shock–acoustic-wave interaction in transonic flow. Exp. Fluids 59(1), 15 (2017)CrossRef
46.
go back to reference Fulker, J.L., Simmons, M.J.: An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil, pp. 379–400. Vieweg+Teubner Verlag, Wiesbaden (1997) Fulker, J.L., Simmons, M.J.: An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil, pp. 379–400. Vieweg+Teubner Verlag, Wiesbaden (1997)
47.
go back to reference Stanewsky, E., Délery, J., Fulker, J., de Matteis, P.: Synopsis of the project EUROSHOCK II. In: Stanewsky, E., Délery, J., Fulker, J., de Matteis, P. (eds.) Drag Reduction by Shock and Boundary Layer Control, vol. 80, pp 1–124. Springer, Berlin (2002) Stanewsky, E., Délery, J., Fulker, J., de Matteis, P.: Synopsis of the project EUROSHOCK II. In: Stanewsky, E., Délery, J., Fulker, J., de Matteis, P. (eds.) Drag Reduction by Shock and Boundary Layer Control, vol. 80, pp 1–124. Springer, Berlin (2002)
48.
go back to reference Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comp. Fluids 34(9), 1096–1114 (2005)MATHCrossRef Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comp. Fluids 34(9), 1096–1114 (2005)MATHCrossRef
49.
go back to reference Hosseini, S., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.: Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016). TSFP9 special issueCrossRef Hosseini, S., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.: Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016). TSFP9 special issueCrossRef
50.
go back to reference Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)MATHCrossRef Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)MATHCrossRef
51.
go back to reference Vinuesa, R., Negi, P., Atzori, M., Hanifi, A., Henningson, D., Schlatter, P.: Turbulent boundary layers around wing sections up to Rec= 1,000,000. Int. J. Heat Fluid Flow 72, 86–99 (2018)CrossRef Vinuesa, R., Negi, P., Atzori, M., Hanifi, A., Henningson, D., Schlatter, P.: Turbulent boundary layers around wing sections up to Rec= 1,000,000. Int. J. Heat Fluid Flow 72, 86–99 (2018)CrossRef
52.
go back to reference Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016)MathSciNetCrossRef Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016)MathSciNetCrossRef
53.
go back to reference Koh, S.R., Meysonnat, P., Meinke, M., Schröder, W.: Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust. 95(1), 169–190 (2015)CrossRef Koh, S.R., Meysonnat, P., Meinke, M., Schröder, W.: Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust. 95(1), 169–190 (2015)CrossRef
54.
go back to reference Vinuesa, R., Örlü, R., Schlatter, P.: On determining characteristic length scales in pressure gradient turbulent boundary layers. J. Phys. Conf. Ser. 708(1), 012014 (2016)CrossRef Vinuesa, R., Örlü, R., Schlatter, P.: On determining characteristic length scales in pressure gradient turbulent boundary layers. J. Phys. Conf. Ser. 708(1), 012014 (2016)CrossRef
55.
go back to reference Alfredsson, P.H., Segalini, A., Örlü, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23(4), 041702 (2011)CrossRef Alfredsson, P.H., Segalini, A., Örlü, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23(4), 041702 (2011)CrossRef
57.
go back to reference Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)CrossRef Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)CrossRef
60.
go back to reference Frohnapfel, B., Lammers, P., Jovanović, J., Durst, F.: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457–466 (2007)MATHCrossRef Frohnapfel, B., Lammers, P., Jovanović, J., Durst, F.: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457–466 (2007)MATHCrossRef
61.
go back to reference Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M., Schröder, W.: Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. B. Fluids 53, 101–112 (2015)CrossRef Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M., Schröder, W.: Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. B. Fluids 53, 101–112 (2015)CrossRef
Metadata
Title
Actively Reduced Airfoil Drag by Transversal Surface Waves
Authors
Marian Albers
Pascal S. Meysonnat
Wolfgang Schröder
Publication date
04-01-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 4/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9998-z

Other articles of this Issue 4/2019

Flow, Turbulence and Combustion 4/2019 Go to the issue

Premium Partners