Skip to main content
Top
Published in: The Journal of Supercomputing 2/2023

30-07-2022

AdaInNet: an adaptive inference engine for distributed deep neural networks offloading in IoT-FOG applications based on reinforcement learning

Authors: Amir Etefaghi, Saeed Sharifian

Published in: The Journal of Supercomputing | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increasing expansion of Internet-of-Things (IoT) in the world requires Big Data analytic infrastructures to produce valuable knowledge in IoT applications. IoT includes devices with limited resources, whereby it requires efficient platforms to process massive data obtained from sensors. Nowadays, many IoT applications such as audio and video recognition depend on state-of-the-art Deep Neural Networks (DNNs). Therefore, we need to execute DNNs on IoT devices. DNNs offer excellent recognition accuracy but they suffer from high computational and memory resource demands. Due to these constraints, currently, IoT applications that depend on deep learning are mostly offloaded to cloudlets and clouds. Offloading imposes extra network bandwidth consumption costs in addition to delayed response for IoT devices. In this paper, we propose a method that instead of using all layers of DNN for inference, only selects a subset of layers that provide sufficient accuracy for each task. We propose AdaInNet, a method to significantly reduce computational cost and network latency in DNN-based IoT applications while maintaining prediction accuracy based on Distributed DNNs (DDNNs). The method uses modified Distributed DNNs with early exits in order to minimize computation costs and network latency by selecting sub-layers or exit branches of DDNNs with early exits. We also proposed a hybrid Classifier-Wise (CW)—Interactive learning method for the training of DDNNs and Agent’s networks. Furthermore, we create a custom agent model for the Advantage Actor-Critic Deep Reinforcement Learning method in order to preserve recognition accuracy while utilizing a minimum number of layers. Finally, we execute the extensive numerical simulation, in order to evaluate and compare our proposed AdaInNet method with rival methods under standard CIFAR 100 and CIFAR 10 datasets and ResNet-110 and ResNet-32 DNNs which are used in IoT applications in previous works. The results provide strong quantitative evidence that the AdaInNet method not only accelerates inference but also reduces computational cost and latency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mutlag AA, Ghani MKA, Arunkumar N, Mohammed MA, Mohd O (2019) Enabling technologies for fog computing in healthcare IoT systems. Futur Gener Comput Sys 90:62–78CrossRef Mutlag AA, Ghani MKA, Arunkumar N, Mohammed MA, Mohd O (2019) Enabling technologies for fog computing in healthcare IoT systems. Futur Gener Comput Sys 90:62–78CrossRef
2.
go back to reference Mahmoud MME, Rodrigues JJPC, Saleem K, Al-Muhtadi J, Kumar N, Korotaev V (2018) Towards energy-aware fog-enabled cloud of things for healthcare. Comput Electr Eng 67:58–69CrossRef Mahmoud MME, Rodrigues JJPC, Saleem K, Al-Muhtadi J, Kumar N, Korotaev V (2018) Towards energy-aware fog-enabled cloud of things for healthcare. Comput Electr Eng 67:58–69CrossRef
3.
go back to reference Wang Xiaonan, Wang Xingwei, Li Yanli (2021) NDN-based IoT with edge computing. Futur Gener Comput Sys 115:397–405CrossRef Wang Xiaonan, Wang Xingwei, Li Yanli (2021) NDN-based IoT with edge computing. Futur Gener Comput Sys 115:397–405CrossRef
4.
go back to reference Deebak BD, Al-Turjman F, Aloqaily M, Alfandi O (2020) IoT-BSFCAN: a smart context-aware system in IoT-Cloud using mobile-fogging. Futur Gener Comput Sys 109:368–381CrossRef Deebak BD, Al-Turjman F, Aloqaily M, Alfandi O (2020) IoT-BSFCAN: a smart context-aware system in IoT-Cloud using mobile-fogging. Futur Gener Comput Sys 109:368–381CrossRef
5.
go back to reference Zhang C (2020) Design and application of fog computing and Internet of Things service platform for smart city. Futur Gener Comput Sys 112:630–640CrossRef Zhang C (2020) Design and application of fog computing and Internet of Things service platform for smart city. Futur Gener Comput Sys 112:630–640CrossRef
6.
go back to reference Al-khafajiy M, Baker T, Al-Libawy H, Maamar Z, Aloqaily M, Jararweh Y (2019) Improving fog computing performance via Fog-2-Fog collaboration. Futur Gener Comput Sys 100:266–280CrossRef Al-khafajiy M, Baker T, Al-Libawy H, Maamar Z, Aloqaily M, Jararweh Y (2019) Improving fog computing performance via Fog-2-Fog collaboration. Futur Gener Comput Sys 100:266–280CrossRef
7.
go back to reference Jin Y, Cai J, Jiawei X, Huan Y, Yan Y, Huang B, Guo Y, Zheng L, Zou Z (2021) Self-aware distributed deep learning framework for heterogeneous IoT edge devices. Futur Gener Comput Sys 125:908–920CrossRef Jin Y, Cai J, Jiawei X, Huan Y, Yan Y, Huang B, Guo Y, Zheng L, Zou Z (2021) Self-aware distributed deep learning framework for heterogeneous IoT edge devices. Futur Gener Comput Sys 125:908–920CrossRef
9.
go back to reference Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Science Department, University of Toronto, Tech Krizhevsky A (2009) Learning Multiple Layers of Features from Tiny Images. Science Department, University of Toronto, Tech
10.
go back to reference Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramabhadran B (2013) Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp 6655–6659 Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramabhadran B (2013) Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp 6655–6659
11.
go back to reference Burer S, Monteiro RDC (2003) A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math Prog 95(2):329–357MathSciNetCrossRefMATH Burer S, Monteiro RDC (2003) A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math Prog 95(2):329–357MathSciNetCrossRefMATH
12.
go back to reference Sajid A, Kyuyeon H, Wonyong S (2017) Structured pruning of deep convolutional neural networks. ACM J Emerg Technol Comput Sys 13(3):1–18 Sajid A, Kyuyeon H, Wonyong S (2017) Structured pruning of deep convolutional neural networks. ACM J Emerg Technol Comput Sys 13(3):1–18
13.
go back to reference Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5MB model size
14.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Efficient convolutional neural networks for mobile vision applications, MobileNets Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Efficient convolutional neural networks for mobile vision applications, MobileNets
15.
go back to reference Graves A (2016) Adaptive computation time for recurrent neural networks Graves A (2016) Adaptive computation time for recurrent neural networks
16.
go back to reference Huang G, Chen D, Li T, Wu F, Van Der Maaten L, Weinberger K (2018) Multi-scale dense networks for resource efficient image classification. In: 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings Huang G, Chen D, Li T, Wu F, Van Der Maaten L, Weinberger K (2018) Multi-scale dense networks for resource efficient image classification. In: 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings
17.
go back to reference Ren M, Pokrovsky A, Yang B, Urtasun R (2018) SBNet: sparse blocks network for fast inference. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 8711–8720 Ren M, Pokrovsky A, Yang B, Urtasun R (2018) SBNet: sparse blocks network for fast inference. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 8711–8720
18.
go back to reference Dong X, Huang J, Yang Y, Yan S (2017) More is less: a more complicated network with less inference complexity. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol 2017 Dong X, Huang J, Yang Y, Yan S (2017) More is less: a more complicated network with less inference complexity. In: Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol 2017
19.
go back to reference Campos V, Jou B, Giró-I-Nieto X, Torres J, Chang SF (2018) SkIp RNN: learning to skip state updates in recurrent neural networks. In: 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings Campos V, Jou B, Giró-I-Nieto X, Torres J, Chang SF (2018) SkIp RNN: learning to skip state updates in recurrent neural networks. In: 6th International Conference on Learning Representations, ICLR 2018—Conference Track Proceedings
20.
go back to reference Seo M, Min S, Farhadi A, Hajishirzi H (2018) Neural speed reading via skim-rnn Seo M, Min S, Farhadi A, Hajishirzi H (2018) Neural speed reading via skim-rnn
21.
go back to reference Wu Z, Nagarajan T, Kumar A, Rennie S, Davis LS, Grauman K, Feris R (2018) BlockDrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Wu Z, Nagarajan T, Kumar A, Rennie S, Davis LS, Grauman K, Feris R (2018) BlockDrop: dynamic inference paths in residual networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
22.
go back to reference Teerapittayanon S, McDanel B, Kung HT (2016) BranchyNet: fast inference via early exiting from deep neural networks. In: Proceedings - International Conference on Pattern Recognition, vol 0 Teerapittayanon S, McDanel B, Kung HT (2016) BranchyNet: fast inference via early exiting from deep neural networks. In: Proceedings - International Conference on Pattern Recognition, vol 0
23.
go back to reference Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings
24.
go back to reference Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings Baker B, Gupta O, Naik N, Raskar R (2017) Designing neural network architectures using reinforcement learning. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings
25.
go back to reference Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99CrossRef Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99CrossRef
26.
go back to reference Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture search. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture search. In: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
27.
go back to reference Phan LA, Nguyen DT, Lee M, Park DH, Kim T (2021) Dynamic fog-to-fog offloading in SDN-based fog computing systems. Futur Gener Comput Sys 117:486–497CrossRef Phan LA, Nguyen DT, Lee M, Park DH, Kim T (2021) Dynamic fog-to-fog offloading in SDN-based fog computing systems. Futur Gener Comput Sys 117:486–497CrossRef
28.
go back to reference Elaziz MA, Abualigah L, Attiya I (2021) Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Futur Gener Comp Sys 124:142–154CrossRef Elaziz MA, Abualigah L, Attiya I (2021) Advanced optimization technique for scheduling IoT tasks in cloud-fog computing environments. Futur Gener Comp Sys 124:142–154CrossRef
29.
go back to reference Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling Internet of Things requests to minimize latency in hybrid Fog-Cloud computing. Fut Gener Comput Sys 111:539–551CrossRef Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K (2020) Scheduling Internet of Things requests to minimize latency in hybrid Fog-Cloud computing. Fut Gener Comput Sys 111:539–551CrossRef
30.
go back to reference Albawi S, Mohammed TA, Al-Zawi S (2018) Understanding of a convolutional neural network. In: Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, vol 2018 Albawi S, Mohammed TA, Al-Zawi S (2018) Understanding of a convolutional neural network. In: Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, vol 2018
31.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2016 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2016
32.
go back to reference Joshi DJ, Kale I, Gandewar S, Korate O, Patwari D, Patil S (2021) Reinforcement learning: a survey. In: Advances in Intelligent Systems and Computing, vol 1311 AISC Joshi DJ, Kale I, Gandewar S, Korate O, Patwari D, Patil S (2021) Reinforcement learning: a survey. In: Advances in Intelligent Systems and Computing, vol 1311 AISC
33.
go back to reference Wang X, Yu F, Dou ZY, Darrell T, Gonzalez JE (2018) SkipNet: learning dynamic routing in convolutional networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11217 LNCS Wang X, Yu F, Dou ZY, Darrell T, Gonzalez JE (2018) SkipNet: learning dynamic routing in convolutional networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11217 LNCS
Metadata
Title
AdaInNet: an adaptive inference engine for distributed deep neural networks offloading in IoT-FOG applications based on reinforcement learning
Authors
Amir Etefaghi
Saeed Sharifian
Publication date
30-07-2022
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 2/2023
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-022-04728-5

Other articles of this Issue 2/2023

The Journal of Supercomputing 2/2023 Go to the issue

Premium Partner