Skip to main content
Top
Published in: Measurement Techniques 2/2017

30-06-2017 | MEDICAL AND BIOLOGICAL MEASUREMENTS

Adaptive Detector of QRS Complexes of an Electrocardiogram Signal Based on the Hilbert Transform

Authors: A. A. Fedotov, A. S. Akulova

Published in: Measurement Techniques | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A QRS complex detector based on the consecutive application of bandpass filtering, the Hilbert transform and an adaptive thresholding algorithm is developed. The detector is compared with existent QRS complex detectors using a model of an electrocardiogram signal contaminated by interferences of various types and intensity. The developed method of QRS complex detecting is verified using the MIT PhysioNet database of clinical electrocardiogram signal recordings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. A. Fedotov and S. A. Akulov, Mathematical Modeling and Analysis of Error Analysis of Biomedical Signal Measuring Transducers, FIZMATLIT (2013). A. A. Fedotov and S. A. Akulov, Mathematical Modeling and Analysis of Error Analysis of Biomedical Signal Measuring Transducers, FIZMATLIT (2013).
2.
go back to reference M. Malik, Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability. Standards of measurement, physiological interpretation and clinical use,” Circulation, 93, No. 5, 1043–1065 (1996). M. Malik, Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability. Standards of measurement, physiological interpretation and clinical use,” Circulation, 93, No. 5, 1043–1065 (1996).
3.
go back to reference G. M. Friesen, T. C. Jannett, M. A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE T. Bio-Med. Eng., 27, No. 1, 85–98 (1990).CrossRef G. M. Friesen, T. C. Jannett, M. A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE T. Bio-Med. Eng., 27, No. 1, 85–98 (1990).CrossRef
4.
go back to reference W. J. Tompkins (ed.), Biomedical Digital Signal Processing: C Language Examples and Laboratory Experiments for the IBM PC, Prentice Hall, New Jersey (1993). W. J. Tompkins (ed.), Biomedical Digital Signal Processing: C Language Examples and Laboratory Experiments for the IBM PC, Prentice Hall, New Jersey (1993).
5.
go back to reference F. J. Theis and A. Meyer-Base, Biomedical Signal Analysis: Contemporary Methods and Applications, MIT Press, MA (2010). F. J. Theis and A. Meyer-Base, Biomedical Signal Analysis: Contemporary Methods and Applications, MIT Press, MA (2010).
6.
go back to reference M. Elgendi, M. Jonkman, and F. De Boer, “Frequency bands effects on QRS detection,” Proc. 3rd Int. Conf. on Bioinspired Systems and Signal Processing, Springer-Verlag, Germany (2010), pp. 428–431. M. Elgendi, M. Jonkman, and F. De Boer, “Frequency bands effects on QRS detection,” Proc. 3rd Int. Conf. on Bioinspired Systems and Signal Processing, Springer-Verlag, Germany (2010), pp. 428–431.
7.
go back to reference A. A. Fedotov, A. S. Akulova, and S. A. Akulov, “Analysis of parameters of frequency filtration of electrocardiographic signal,” Izmer. Tekhn., No. 11, 65–68 (2014). A. A. Fedotov, A. S. Akulova, and S. A. Akulov, “Analysis of parameters of frequency filtration of electrocardiographic signal,” Izmer. Tekhn., No. 11, 65–68 (2014).
8.
go back to reference D. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med., 31, 399–406 (2001).CrossRef D. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med., 31, 399–406 (2001).CrossRef
9.
go back to reference R. M. Rangayyan, Analysis of Biomedical Signals. Practical Approach, FIZMATLIT, Moscow (2007). R. M. Rangayyan, Analysis of Biomedical Signals. Practical Approach, FIZMATLIT, Moscow (2007).
10.
go back to reference P. E. McSharry, G. Clifford, L. Tarassenko, and L. A. Smith, “A dynamic model for generating synthetic electrocardiogram signals,” IEEE T. Bio-Med. Eng., 50, No. 3, 289–295 (2003).CrossRef P. E. McSharry, G. Clifford, L. Tarassenko, and L. A. Smith, “A dynamic model for generating synthetic electrocardiogram signals,” IEEE T. Bio-Med. Eng., 50, No. 3, 289–295 (2003).CrossRef
11.
go back to reference H. Han, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography,” Proc. 29th Ann. Int. Conf. of the IEEE EMBS (2007), pp. 1539–1541. H. Han, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography,” Proc. 29th Ann. Int. Conf. of the IEEE EMBS (2007), pp. 1539–1541.
12.
go back to reference P. V. Novitsky and I. A. Zograf, Evaluation of Measurement Errors, Energoatomizdat, Leningrad (1991). P. V. Novitsky and I. A. Zograf, Evaluation of Measurement Errors, Energoatomizdat, Leningrad (1991).
13.
go back to reference J. Pan and W. J. Tompkins, “A real time QRS detection algorithm,” IEEE T. Bio-Med. Eng., 32, 230–236 (1985).CrossRef J. Pan and W. J. Tompkins, “A real time QRS detection algorithm,” IEEE T. Bio-Med. Eng., 32, 230–236 (1985).CrossRef
14.
go back to reference A. Ruha, S. Sallinen, and S. Nissila, “A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV,” IEEE T. Bio-Med. Eng., 44, No. 3, 159–167 (1997).CrossRef A. Ruha, S. Sallinen, and S. Nissila, “A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV,” IEEE T. Bio-Med. Eng., 44, No. 3, 159–167 (1997).CrossRef
15.
go back to reference S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet transform based QRS complex detector,” IEEE T. Bio-Med. Eng., 46, No. 7, 838–848 (1999).CrossRef S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet transform based QRS complex detector,” IEEE T. Bio-Med. Eng., 46, No. 7, 838–848 (1999).CrossRef
18.
go back to reference G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE T. Bio-Med. Eng., 20, No. 3, 45–50 (2001).CrossRef G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE T. Bio-Med. Eng., 20, No. 3, 45–50 (2001).CrossRef
Metadata
Title
Adaptive Detector of QRS Complexes of an Electrocardiogram Signal Based on the Hilbert Transform
Authors
A. A. Fedotov
A. S. Akulova
Publication date
30-06-2017
Publisher
Springer US
Published in
Measurement Techniques / Issue 2/2017
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-017-1173-8

Other articles of this Issue 2/2017

Measurement Techniques 2/2017 Go to the issue