Skip to main content
Erschienen in: Measurement Techniques 2/2017

30.06.2017 | MEDICAL AND BIOLOGICAL MEASUREMENTS

Adaptive Detector of QRS Complexes of an Electrocardiogram Signal Based on the Hilbert Transform

verfasst von: A. A. Fedotov, A. S. Akulova

Erschienen in: Measurement Techniques | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A QRS complex detector based on the consecutive application of bandpass filtering, the Hilbert transform and an adaptive thresholding algorithm is developed. The detector is compared with existent QRS complex detectors using a model of an electrocardiogram signal contaminated by interferences of various types and intensity. The developed method of QRS complex detecting is verified using the MIT PhysioNet database of clinical electrocardiogram signal recordings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Fedotov and S. A. Akulov, Mathematical Modeling and Analysis of Error Analysis of Biomedical Signal Measuring Transducers, FIZMATLIT (2013). A. A. Fedotov and S. A. Akulov, Mathematical Modeling and Analysis of Error Analysis of Biomedical Signal Measuring Transducers, FIZMATLIT (2013).
2.
Zurück zum Zitat M. Malik, Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability. Standards of measurement, physiological interpretation and clinical use,” Circulation, 93, No. 5, 1043–1065 (1996). M. Malik, Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology, “Heart rate variability. Standards of measurement, physiological interpretation and clinical use,” Circulation, 93, No. 5, 1043–1065 (1996).
3.
Zurück zum Zitat G. M. Friesen, T. C. Jannett, M. A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE T. Bio-Med. Eng., 27, No. 1, 85–98 (1990).CrossRef G. M. Friesen, T. C. Jannett, M. A. Jadallah, et al., “A comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE T. Bio-Med. Eng., 27, No. 1, 85–98 (1990).CrossRef
4.
Zurück zum Zitat W. J. Tompkins (ed.), Biomedical Digital Signal Processing: C Language Examples and Laboratory Experiments for the IBM PC, Prentice Hall, New Jersey (1993). W. J. Tompkins (ed.), Biomedical Digital Signal Processing: C Language Examples and Laboratory Experiments for the IBM PC, Prentice Hall, New Jersey (1993).
5.
Zurück zum Zitat F. J. Theis and A. Meyer-Base, Biomedical Signal Analysis: Contemporary Methods and Applications, MIT Press, MA (2010). F. J. Theis and A. Meyer-Base, Biomedical Signal Analysis: Contemporary Methods and Applications, MIT Press, MA (2010).
6.
Zurück zum Zitat M. Elgendi, M. Jonkman, and F. De Boer, “Frequency bands effects on QRS detection,” Proc. 3rd Int. Conf. on Bioinspired Systems and Signal Processing, Springer-Verlag, Germany (2010), pp. 428–431. M. Elgendi, M. Jonkman, and F. De Boer, “Frequency bands effects on QRS detection,” Proc. 3rd Int. Conf. on Bioinspired Systems and Signal Processing, Springer-Verlag, Germany (2010), pp. 428–431.
7.
Zurück zum Zitat A. A. Fedotov, A. S. Akulova, and S. A. Akulov, “Analysis of parameters of frequency filtration of electrocardiographic signal,” Izmer. Tekhn., No. 11, 65–68 (2014). A. A. Fedotov, A. S. Akulova, and S. A. Akulov, “Analysis of parameters of frequency filtration of electrocardiographic signal,” Izmer. Tekhn., No. 11, 65–68 (2014).
8.
Zurück zum Zitat D. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med., 31, 399–406 (2001).CrossRef D. Benitez, P. A. Gaydecki, A. Zaidi, and A. P. Fitzpatrick, “The use of the Hilbert transform in ECG signal analysis,” Comput. Biol. Med., 31, 399–406 (2001).CrossRef
9.
Zurück zum Zitat R. M. Rangayyan, Analysis of Biomedical Signals. Practical Approach, FIZMATLIT, Moscow (2007). R. M. Rangayyan, Analysis of Biomedical Signals. Practical Approach, FIZMATLIT, Moscow (2007).
10.
Zurück zum Zitat P. E. McSharry, G. Clifford, L. Tarassenko, and L. A. Smith, “A dynamic model for generating synthetic electrocardiogram signals,” IEEE T. Bio-Med. Eng., 50, No. 3, 289–295 (2003).CrossRef P. E. McSharry, G. Clifford, L. Tarassenko, and L. A. Smith, “A dynamic model for generating synthetic electrocardiogram signals,” IEEE T. Bio-Med. Eng., 50, No. 3, 289–295 (2003).CrossRef
11.
Zurück zum Zitat H. Han, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography,” Proc. 29th Ann. Int. Conf. of the IEEE EMBS (2007), pp. 1539–1541. H. Han, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography,” Proc. 29th Ann. Int. Conf. of the IEEE EMBS (2007), pp. 1539–1541.
12.
Zurück zum Zitat P. V. Novitsky and I. A. Zograf, Evaluation of Measurement Errors, Energoatomizdat, Leningrad (1991). P. V. Novitsky and I. A. Zograf, Evaluation of Measurement Errors, Energoatomizdat, Leningrad (1991).
13.
Zurück zum Zitat J. Pan and W. J. Tompkins, “A real time QRS detection algorithm,” IEEE T. Bio-Med. Eng., 32, 230–236 (1985).CrossRef J. Pan and W. J. Tompkins, “A real time QRS detection algorithm,” IEEE T. Bio-Med. Eng., 32, 230–236 (1985).CrossRef
14.
Zurück zum Zitat A. Ruha, S. Sallinen, and S. Nissila, “A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV,” IEEE T. Bio-Med. Eng., 44, No. 3, 159–167 (1997).CrossRef A. Ruha, S. Sallinen, and S. Nissila, “A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV,” IEEE T. Bio-Med. Eng., 44, No. 3, 159–167 (1997).CrossRef
15.
Zurück zum Zitat S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet transform based QRS complex detector,” IEEE T. Bio-Med. Eng., 46, No. 7, 838–848 (1999).CrossRef S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet transform based QRS complex detector,” IEEE T. Bio-Med. Eng., 46, No. 7, 838–848 (1999).CrossRef
18.
Zurück zum Zitat G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE T. Bio-Med. Eng., 20, No. 3, 45–50 (2001).CrossRef G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE T. Bio-Med. Eng., 20, No. 3, 45–50 (2001).CrossRef
Metadaten
Titel
Adaptive Detector of QRS Complexes of an Electrocardiogram Signal Based on the Hilbert Transform
verfasst von
A. A. Fedotov
A. S. Akulova
Publikationsdatum
30.06.2017
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 2/2017
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-017-1173-8

Weitere Artikel der Ausgabe 2/2017

Measurement Techniques 2/2017 Zur Ausgabe